

CHEOPS Instrument: Design & Operations

Andrea Fortier CHEOPS Instrument Scientist

University of Bern

Overview

Instrument design

- Spacecraft accommodation
- Instrument Schedule
- Focal plane and CCD
- PSF + pointing jitter + flat field
- CHEOPS passband
- Field rotation

Design

Characteristics

Instrument operations

• CHEOPS science data format

Operations

Payload description

CHEOPS

Payload Description

Ritchey-Chretien telescope 30 cm effective aperture Optical bandpass 330-1100 nm On-axis carbon fiber structure Defocused PSF Payload mass 60 kg

CHEOPS Spacecraft Accommodation

esa

Instrument Schedule

CHEOPS

Focal Plane and CCD

CHEOPS Flight detector characterisation completed **@esa**

550 nm

750 nm

950 nm

More in A. Deline's talk

Non-linearity (10% to 70% Full Well Capacity)

Flat field knowledge better than 0.1%

Detector read-out noise < 10 e-/px

CHEOPS PSF, pointing jitter and flat field

Jitter effect

esa

Defocused PSF

Andrea Fortier

CHEOPS PSF, pointing jitter and flat field esa

Defocused PSF to mitigate the noise produced by the combination of pixel response non-uniformity and pointing precision.

CHEOPS Passband and global transmission @esa

CHEOPS Passband and global transmission @esa

Global Transmission as a function of the stellar spectral type.

Field Rotation

Andrea Fortier

Field Rotation

For thermal stability the radiators are always opposite to the Earth

Andrea Fortier

SciReq 5.1 Temporal resolution of the measurements (L1) CHEOPS shall be able to provide one photometric measurement per minute (goal: one per 30 seconds) in order to characterise the transit light curves of Neptune-size planets (SciReq 1.2).

In particular, this requirement will enable the ingress and egress phases to be temporally resolved, which will in turn lift the degeneracy between the impact parameter and the transit duration.

Image types

Image types	Description		
Window image			
Exposed window	Selected section of the CCD image. In the nominal case, it contains the exposed target star in its centre. The shape, size and location in the CCD are configurable parameters.		
CCD side margins	Section of the dark, blank and overscan columns that are in the same CCD stripe of the exposed window.		
CCD top margin	Section of the dark and overscan rows that correspond to the exposed window columns.		
Full CCD images	Full-frame image: exposed section plus CCD margins (1076×1027 pixels)		
Imagette	Small window image that contains only the PSF		

Window image

esa

On-bo	ard image processin	g methods	
1	STACK	In STACK mode, individual exposures are COMBINEd into one single image that is downloaded to the ground. Before being COMBINEd, each exposure is processed by one or more science algorithms. Note that, in general, an imagette of the PSF is saved and download to the ground for each individual exposure, before combination.	
2	SNAP	In SNAP mode, individual exposures (images with an exposure time t_{exp}) are all saved and downloaded to the ground.	
3	DROP	In DROP mode, individual exposures (images with an exposure time t_{exp}) are used for specific functions (e.g. centroid generation) but not stored and/or downloaded to the ground. These images are DISCARDed.	

Read Out Modes

Flexibility:

- The target star can be placed anywhere in the CCD
- Window shape: square, rectangle, circle*
- Window size: customisable
- Imagette size: customisable
- Imagette frequency: one per exposure if $t_{exp} < 5$ s, otherwise stacked to get one every 5 s. Combination Dark Blank Dark Blank Overscan Dark Oversca
- Window margins:
 - "image mode"
 - "reduced mode"
 - "total collapse mode"

Combination	Dark	Blank	Dark	Blank	Overscan	Dark	Overscan
	Right	Right	Left	Left	Left	Top	Top
image mode	16 * X pixel	8 * X pixel	16 * X pixel	8 * X pixel	4 * X pixel	Y * 3 Pixel	Y * 6 pixel
reduced	3 values	no	3 values	no	3 values	Y * 3	3 values
mode	per row	data	per row	data	in total	Pixel	per column
total collapsed mode	4 values	4 values	4 values	4 values	4 values	4 values	4 values

CHEOPS Data

CHEOPS data baseline model as a function of the exposure time. Minimum cadence I image/minute.

CHEOPS Instrument: Performance

Andrea Fortier CHEOPS Instrument Scientist

University of Bern

^b UNIVERSITÄT BERN

21

Science Data

Ground Station INTA- Spain Example: Target star: V9 $t_{exp} = 10 \text{ s}$ Image cadence: I stacked image/min Visit duration: 48 hours

Ground Station INTA- Spain

Science Data

SciReq I.I

- Earth-size planets
- G5 dwarfs (T = 5500 K)
- $6 \leq V \leq 9$
- Transit depth = 100 ppm
- Photometric precision ≤ 20 ppm in 6 h of integration time

SciReq I.2

- Neptune-size planets
- K dwarfs (T = 4500 K)
- V ≤ I 2
- Transit depth = 2500 ppm
- Photometric precision ≤ 85 ppm in 3 h of integration time

PSF, jitter and flat field

Read-out noise: CCD + Analog chain random noise.

If the exposure time is lower than 12 seconds, the read-out frequency is 230 kHz. Otherwise, 100 kHz.

 $t_{exp} \begin{cases} \leq 12 \ s \ \rightarrow \ \text{RON} = 18 \ e^{-}/px \\ > 12 \ s \ \rightarrow \ \text{RON} = 12 \ e^{-}/px \end{cases}$

CHEOPS

CCD gain variability with T

Measurements on the flight CCD show that, for a temperature stability better than 10 mK, the noise contribution due to gain fluctuations with temperature is ~ 10 ppm.

Quantum efficiency variability with T

From measurements, the QE variability with T is ~ 1 ppm/mK.The temperature stability is better than 10 mK.Therefore, the noise contribution is ~ 10 ppm.

Analog electronics stability:

CCD gain change due to bias voltages, the analog electronics ADC gain variations in the PSDU input voltages and the analog electronics ADC gain variations due to variations in temperature.

$N_{AES} < 10 \ ppm$

Andrea Fortier

CCD gain and QE variability with T are anti-correlated

 $N_{gain,QE} = \max(N_{gain}, N_{QE}) \simeq 10 \text{ ppm}$

Dark current variation with T: negligible

Timing error: lower than 2 ppm

Quantisation noise: negligible

Flux [ph/s/px]

Orbit dependence

Pointing direction: RA= 8 h 6 min 6 seg and DEC= -31.5°; date: 4/2/2018, 08:46 h; orbit altitude 700 km

The PST (Point Source Transmission function) cannot be measured in the lab. It will be "measured" during In-Orbit Commissioning and monitored with dedicated M&C observations (see R. Alonso's talk).

Seasonal dependence

Assumption: SL contamination in the images can be eliminated with an efficiency better than 99%.

Noise Budget SL contamination <u>allocation</u>:

- 5 ppm for V=9
- 70 ppm for V=12

See D. Ehrenreich's talk for sky coverage

For the total noise estimation, we assume that all noises are independent, although this may not strictly apply to all the cases. Independent noises are added in quadrature. Let's N_i be one of the noises mentioned in Sec. 1.3. The total noise expected after uninterrupted integration time t is:

Noises are added in quadrature

To calculate the Noise Budget we generated an excel sheet where the individual sources of noise mentioned in Sec. 2 are considered (RD01). White noises average with time as:

 $N_{white} = \frac{N_{white}^{exp}}{\sqrt{number of exposures}}$

Methodology

where N_{white}^{exp} is the noise per exposure. The white noises per exposure considered here, N_{white}^{exp} , are the previously defined N_{shot} , N_{sky} , N_{RON} , N_{ACRN} , N_{dark} and N_Q . CR_{noise} already includes in its definition the time average.

Systematic noises do not average with time (worst case assumption); their noise values are independent of the exposure time. These are: N_{SL} , $N_{ff+jitter}$, N_{dark}^{sys} , $N_{gain+QE var}$, N_{AES} , and N_{TE} .

Finally, to calculate the total error budget, all noises are added in quadrature.

_	_	

Note that contamination by background stars and stellar noise are not included in the NB.

Andrea Fortier

2					
	el_px				
	1.56E+03	1.52E+10		1192	
			210.76		
	6.20E+01				
		1.525+08			
		t exp for 10%	t exp for 70%		
	11158190				
	4442155.4				
	1768453.9				
	444215.54				
	176845 39				
	111581.9				
	44421.554				

Noise Budget calculation

Input parameters

Parameter	Value
Radius PSF	12 рх
Photometric aperture (radius)	30 px
Read Out Noise (CCD+FEE)	18 e-/px or 12e-/px
Quantisation	16 bits
Pixel Size	13 µm
Angular scale	1 arcsec/px
Pixel Full Well Cap.	132 000 e-
Image Size	200×200 px
Operating Temperature	233 K
Detector Temperature Stability	0.01 K
Dark Current	0.08 e-/px/s
Flat Field Knowledge	0.1%
Earth Stray Light	~0.3 e-/px/s ⁷
Zodiacal Light	4.02 e-/px/s
Detector Gain Variability	10 ppm
Detector QE variation with temp.	10 ppm
Timing error	2 ppm
Analog electronics stability	10 ppm
CR parameter C	132 ppm

Case Number	Α	В	C
Mv star	6 (ST = G8)	9 (ST = G8)	12 (ST = K5)
Exposure time [s]	1	10	60
Integration time [h]	6	6	3
Global throughput (CCD+Optics)	49%	49%	45%
Shot noise [ppm]	2.0 [299]	8.1 [377]	42.8 [574]
Background (inc. dark) [ppm]	0.2 [24]	0.6 [28]	7.1 [96]
Cosmic rays [ppm]	7.0	7.0	9.8
Earth stray light [ppm]	0.3	5.0	69.1
Jitter + Flat Field + Breathing [ppm]	5	5	5
Read out noise (CCD) [ppm]	0.6 [86]	2.9 [136]	15.7 [211]
Dark current variation noise [ppm]	0	0	0.3
CCD Gain variability + QE change [ppm]	10	10	10
Analog electronics stability [ppm]	10	10	10
Timing error [ppm]	2	2	2
Quantization noise [ppm]	0 [1.1]	0 [1.8]	0.2 [3]
Error time average [ppm]	17.0	19.5	85.0

Read-out mode: Ultrabright Exposure time < 1 s Exposure repetition period: t_{exp} + 1s

Noise Budget for 6h integration time

V	T _{exp} = 1s	T _{exp} = 0.5 s	Texp = 0.1 s
6	16.8 ppm	17.1 ppm	19.0 ppm
5	16.7ppm	16.8 ppm	17.4 ppm
4	16.7 pp	16.7 ppm	16.9 ppm
3	16.65 ppm	46.65 ppm	16.75 ppm
2	16.65 ppm	16. 6 5 ppm	16.7 ppm
1	16.65 ppm	16.65 ppm	16.7 ppm

The duty cycle is inefficient

Note that the transfer time from the image section to the storage section is 25 milliseconds. Therefore, the shorter the exposure time, the lower S/N between the star and the smearing trails.

CHEOPS Open Time Workshop: 26-27th July, Schloss Seggau

Dark current and bad pixels

Will t (see f

Will be monitored during the mission (see R.Alonso's talk)

Dark current @ Beginning of Life: negligible Dark current @ End of life: could be two orders of magnitude larger. This can lead to a significant increase in the noise budget, specially for faint stars.

Bad Pixels: hot, warm and random telegraphic pixels. Bad pixels could affect more than 10% of the CCD pixels. Bad pixels that cannot be detected are particularly dangerous. Undetectable bad pixels could increase the noise budget in 20%. Detectable bad pixels can be corrected and the quality of the lightcurve will then depend on the correction method.

Ageing

Charge Transfer Inefficiency (CTI) (see R.Alonso's talk)

CTI will induce trails in stars. Trails of background stars will rotate in and out the aperture with the satellite's orbital period.

Uncorrected CTI effect could lead to a sensitive increase of the noise budget. Preliminary proposed correction method limits this increase by a factor 4.

The change in the CTI will be monitored during the mission and correction methods will be studied to reduce its impact.

- The performance science requirements (SciReq. I.I and I.2) are met.
 - I. Estimated noise budget for bright stars < 20 ppm
 - 2. Estimate noise budget for fainter stars < 85 ppm
- The instrumental noise dominates for bright stars, while the photon noise (and the straylight contamination)* dominates (could dominate) for fainter stars.
- Exposures shorter than I second are possible (down to I millisecond).
 Although the duty cycle of this read-out mode is inefficient, it should be used for very bright stars in order to avoid saturation in the PSF.
- Not surprisingly, the instrument performance (specially the CCD) is expected to degrade with time. Monitoring and characterisation observations are planned to follow the evolution closely and to implement SW mitigation strategies when possible.

* The straylight contamination of an image depends on the pointing

Andrea Fortier

CHEOPS Open Time Workshop: 26-27th July, Schloss Seggau

Andrea F

Payload Description

Subsystem	Acronym	Organization
Instrument Prime	CIS	UBE
Outer baffle and door	BCA	CSL
Telescope Structure and Optical Bench	OTA	UBE
Telescope optical design and optical components	TEL	INAF
FPA and FEE Radiators	RAD	ADM
Focal plane, thermal control, and proximity electronics	FPM	DLR
Sensor electronics module	SEM	DLR
Backend electronics	BEE	IWF
DCDC Power converter	DCDC	IWF (RSA)
Detector	CCD	ESA
Payload Computer	DPU	IWF
Science Calibration	CAL	UGE

Observa	ation activities	
1	NOM_SCI	Nominal Science. Acquisition of images for a scientific study. This activity is the core of a nominal visit. A typical example is the observation of a star from either the core science programme (GTO) or guest observers programme (GO).
2	ACQ	Acquisition. Here acquisition refers to target acquisition in the detector. Once the CIS receives the star map of the targeted region of the sky and starts the pattern recognition by comparing it with the field of view, the instrument acquisition consists in putting the target star at the desired location on the detector
3	CAL	Calibration. Sequence of images acquired at the beginning and (possibly) at the end of each nominal visit for calibration purposes. Required by, and used as input to, the on-ground science data processing pipeline.
4	M&C	Monitoring and characterisation. Visits dedicated to on-going characterisation of the instrument and monitoring of the instrument performance Formance See R. Alonso's talk

CHEOPS Visit

