

Payload on-ground calibration

Adrien Deline
University of Geneva

Overall approach

Test campaign	Institute	Date
CCD tests	e2v	2014
CCD characterization	Geneva	2015-2016
FPM calibration	Bern	Q2-Q3 2017
Payload calibration	Geneva/Bern	Q4 2017

*FPM : Focal plane module

Calibration bench @ UNIBE

Context

- CHEOPS does not have an on-board calibration source nor a shutter
- All the key measurements already done during CCD characterization campaign
- Most of these results have to be measured again during payload calibration
 - change of electronics
 - payload optics
 - but gain sensitivities are measured for good
- Some of these results will be updated in-flight during the Monitoring & Characterization phase (M&C)

See R. Alonso's talk (talk n°6.2)

U will be updated during in-flight M&C

U will be updated during in-flight M&C

U will be updated during in-flight M&C

Bias & Read-out noise

- Os exposures in the dark
- Bias level = 1735 ± 1 ADU
- RON = 4.02 ± 0.01 ADU

from FM2 test report (CHEOPS-UGE-SYS-120_1.2)

Bias & Read-out noise

- Os exposures in the dark
- Bias level = 1735 ± 1 ADU
- RON = 4.02 ± 0.01 ADU

- Measurements during payload calibration
 - dependence on electronic chain
 - small RON variations with V_{bias} (less than 0.2 ADU/V, from CCD characterization)

74.604

0.017

0.013

0.011

0.009

0.008

0.007

0.005

0.003

0.001

Dark current

CCD characterization :

- Various exposures in the dark at different temperature (-40..20 °C)
- Dark @ -40°C = 0.0016 ADU/s(10 times better than specs)
- Hot pixels coordinates

Dark current

- Various exposures in the dark at different temperature (-40..20 °C)
- Dark @ -40°C = 0.0016 ADU/s(10 times better than specs)
- Hot pixels coordinates

- Measurements during payload calibration
 - only at 0°C and 10°C to identify/locate hot pixels

System gain

- CCD characterization :
 - Different exposures in white light
 - up to saturation
 - Slope at (0,0) of a2D-polynomial fit
 - Gain = 0.4410 ADU/e⁻

System gain

- Different exposures in white light up to saturation
- Slope at (0,0) of a2D-polynomial fit
- Gain = 0.4410 ADU/e⁻

- Measurements during payload calibration
 - dependence on electronic chain
 - gain variations with respect to V_{bias} will be extrapolated from CCD characterization measurements

System gain

Gain sensitivity
 from CCD characterization
 (not repeated during payload
 calibration campaign)

- Voltages stability from DLR (nov. 2016)
 - Very high V_{bias} stability
 (less than 1 mV over tens of hours)

Full-well capacity

- CCD characterization :
 - Different exposures in white light up to saturation
 - Full-well capacity is defined as the point where CCD response is 3% away from linear fit
 - FWC = 58823 ADU
- Conservative definition
 - when reaching FWC, the CCD is not fully saturated (still signal beyond FW)

Non-linearity

- CCD characterization :
 - Different exposures in white light up to saturation
 - Non-linearity is the difference between CCD response and a linear fit
 - Nominal non-lin. ≤ 0.088 %
 in the 10-to-70%_{FWC} range

Non-linearity

- Different exposures in white light up to saturation
- Non-linearity is the difference between CCD response and a linear fit
- Nominal non-lin. ≤ 0.088 %
 in the 10-to-70%_{FWC} range

- Measurements during payload calibration
 - should show no dependence on electronic chain (dominated by CCD)
 - nominal case only (expect very small V_{bias} variations during mission compared to the range explored)

Flat fields

CCD characterization :

- Various exposures in monochromatic light at different λ
- Wavelength bands of 30 nm
- Blue diamond and "tree-ring" effects

Flat fields

- Various exposures in monochromatic light at different λ
- Wavelength bands of 30 nm
- Blue diamond and "tree-ring" effects

- Measurements during payload calibration
 - additional vignetting due to optics
 - denser wavelength sampling (FF combination)

Quantum efficiency

CCD characterization :

- Various exposures in monochromatic light at different λ
- Wavelength bands of 30 nm

$$- QE = \frac{N_{electrons}}{N_{photons}}$$
from CCD from reference photodiode

- Measurements during payload calibration
 - to include transmission of the whole optical system

Other tests of the CCD characterization

FM1 saturation data

- Saturation
 - No memory effect

(No new measurement planned during calibration)

Other tests during payload calibration campaign

PSF shape

- Functional test
 - check alignment and any optical issue
 - identify PSF for tracking
 - over FoV and λ
- No delivery of in-flight PSF
 - non-uniform illumination of the pupil
 - gravity effect

Other tests during payload calibration campaign

Photometric performances

- This is not a calibration
- Performance test 1 : stability
 - nothing moves + tracking loop
 - stability measurement
- Performance test 2 : flat field
 - with jitter
- Performance test 3 : full
 - with temperature variations (survival heaters)

Payload on-ground calibration

Adrien Deline
University of Geneva

