

CHEOPS T&S WORKING GROUP 2 – DATA ANALYSIS

CHEOPS AO-3

Top tips for applicants

How many orbits do I need?

- CHEOPS is in a nadir-locked 100-min orbit:
 - Hence the field of view rotates.
- CHEOPS photometry contains orbitally-modulated systematics:
 - Contamination by other stars
 - Thermally-driven changes in PSF shape.
- These are easily decorrelated
 - ... given enough out-of-transit data.
- Recommendation: 5 contiguous orbits out-of-transit (OOT)
 - 3 OOT orbits before ingress AND
 - 2 OOT orbits after egress

Example: Field contamination and flux modulation with roll angle in HD108236 (Bonfanti et al 2021A&A...646A.157B)

Visit efficiency (EFF) and duration

Aim for EFF > 60%, bare minimum 50%

visit_duration = MAX(3 * transit_duration, transit_duration + N * cheops_orbit) + /

where N = number of cheops_orbit of out-of-transit. Recommend 3 before and 2 after for ramp and roll-angle decorrelation,

And *I* = Latest_Observation_Start - Earliest_Observation_Start

I is needed to increase flexibility in the scheduling process. It assures that the observation covers the right amount of time before and after the transit.

The EFF changes with different $\phi_{\text{start}} \Rightarrow$ run the FC with three trial scenarios:

- Earliest_Observation_Start == Latest_Observation_Start = starting phase (ϕ_{start})
- Earliest_Observation_Start == Latest_Observation_Start = earliest starting phase ($\phi_{early start}$)
- Earliest_Observation_Start == Latest_Observation_Start = latest starting phase ($\phi_{\text{late start}}$)

Check the behaviour of the EFF returned by the FC \Rightarrow get an idea of the EFF behaviour (indicative!)

Example: HD106315

Maxted et al (2021)

In this illustration [transit_duration + 5*CHEOPS_orbit + P_{planet} *($\phi_{late} - \phi_{early}$)] > [3*transit_duration].

How can I observe both ingress and egress?

- Target visibility is subject to interruptions:
 - When the target passes behind the Earth
 - When CHEOPS crosses the South Atlantic Anomaly
- Use the Feasibility Checker to set efficiency.
- You should define two important things:
 - Overall efficiency (previous slide)
 - Efficiency in Critical Phase Ranges (i.e. ingress, egress)
- Every target requires a different compromise:
 - Higher efficiency => fewer feasible visits
 - Lower efficiency => risk of missing ingress and/or egress

Critical phases ranges (CPR)

e.g. ingress and/or egress tips:

Run the FC with:

- Fulfil_all_Phase_Ranges == false (e.g. condition on ingress or egress, not exclusive)
- Minimum_Phase_Duration == 30% (minimum value allowed in the FC)
- Minimum_Effective_Duration (EFF) == 50%

CPR efficiency **does not change** with different ϕ_{start}

Test different CPR values, e.g.:

- based on full ingress/egress time (τ) taking into account parameter errors
- based on τ without errors on the parameters
- based on half τ centered on the ingress/egress (so-called T_{1.5} and T_{3.5})

If the timing is the objective, prepare the ObsReq taking into account:

- high EFF on the centered ingress/egress provides strong constraints on transit time
- to increase the schedulability it is better to require one CPR with minimum value of 50%
- remember that requiring both CPR will reduce drastically the chance to be scheduled
- FC provides general information on the visibility and qualitative information on the EFF of the CPR.

CHEOPS (SCIENCE TEAM Statistics about ingress/egress sampling

- Ingress ϕ_{12} and egress ϕ_{34} are delicate phases to constrain:
 - the impact parameter b and
 - the time T_0 of mid-transit.
- Gaps in the Cheops LCs may prevent a proper sampling either of ϕ_{12} or ϕ_{34} .
- The (worst) case of TOI-1233 (3 visits, no constraints specified:)
 - Efficiency of the three scheduled visits: 55-60% • Number of transits: $5 \rightarrow 5 \phi_{12} + 5 \phi_{34} = 10 \phi$
- - Over 10 φ: • 3 we're fully missed
 - 3 were fully covered
 - 4 were partially covered

gap ₁₂ [%]	gap ₃₄ [%]
47	0
0	100
100	56
94	0
16	100

Percentage duration of gaps: $100\% \rightarrow$ Phase fully missed $0\% \rightarrow$ Phase fully covered From Bonfanti+ (2021)

- Take-home message: wise use of the FC will improve your results while ensuring schedulability.
 Some targets will be easy to cover adequately in one visit; others may need multiple visits.
 In addition you need to consider how many visits are needed to achieve required SNR (use the ETC).