Modelling the spatial distribution of emission line galaxies

Carlton Baugh Institute for Computational Cosmology

Semi-analytical galaxy formation

Solve set of coupled differential equations

Baugh 2006, Benson 2010

Predict star formation histories of galaxies

Star formation history

Spectral energy distribution

Cowley et al. 2018 arXiv:1702.02146

A unified multi-wavelength model of galaxy formation

Lacey et al. 2016 MNRAS, 42, 3854 arXiv:1509.08473 (see also models by Gonzalez-Perez et al 2014, 2018)

- How many model parameters?
- Example of parameter recalibration

Model parameters-I

parameter	value	range	type=F/P/S	description	Eqn/paper	
Cosmology				Komatsu et al. (2011)		
$\Omega_{\rm m}$	0.272	-	F	matter density		
$\Omega_{\rm b}$	0.0455	-	F	baryon density		
h	0.704	-	F	Hubble parameter		
σ_8	0.81	-	F	Fluctuation amplitude		
n_s	0.967	-	F	Scalar spectral index		
Stellar population					Maraston (2005)	
IMF : quiescent						
x	Kennicutt	-	F	IMF	Eq. 32	
p	0.021	-	F	yield	Eq. 31	
R	0.44	-	F	recyled fraction	Eq. 30	
IMF : starburst					_	
x	1	0-1	Р	IMF slope	Eq. 32	
p	0.048	-	Р	yield	Eq. 31	
R	0.54	-	Р	recyled fraction	Eq. 30	
Star formation: quiescent					Lagos et al. (2011)	
$\nu_{\rm SF}$	$0.74 \mathrm{Gyr}^{-1}$	$0.25 - 0.74 Gyr^{-1}$	Р	efficiency factor for molecular gas	Eq. 7	
P_0	$1.7 imes10^4$	-	F	normalisation of pressure relation	Eq. 6	
α_P	0.8	-	F	slope of pressure relation	Eq. 6	
Star formation: bursts					Baugh et al. (2005	
$f_{\rm dyn}$	20	0 - 100	Р	Multiplier for dynamical time	Eq. 9	
$\tau_{\rm *burst,min}$	0.1 Gyr	0-1.0	Р	minimum burst timescale	Eq. 9	
Photoionization feedback					Benson et al. (200	
$z_{\rm reion}$	10 - F		F	reionization redshift		
$V_{\rm crit}$	$30 \rm km s^{-1}$	-	F	threshold circular velocity		

Table 1. Table of parameters. F=fixed, P=primary, S=secondary. P_0 has units $k_B \text{cm}^{-3} \text{K}$.

Lacey et al. 2016

Model parameters -II

SNe feedback					Cole et al. (2000)	
V _{SN}	anything	Р	pivot velocity	Eq. 10		
$\gamma_{\rm SN}$	3.2	0-5.5	Р	Eq. 10		
$lpha_{ m ret}$	0.64	0.3-3	Р	reincorporation timescale multiplier	Eq. 11	
AGN feedback & SMBH growth					Bower et al. (2006)	
$f_{ m BH}$	0.005	0.001-0.01	S	fraction of mass accreted onto BH in starburst	Malbon et al. (2007)	
$\alpha_{\rm cool}$	0.8	0-2	Р	ratio of cooling/free-fall time	Eq. 12	
$f_{ m Edd}$	0.01	-	S	controls maximum BH heating rate	Eq. 13	
$\epsilon_{ m heat}$	0.02	-	S	BH heating efficiency		
Disk stability					Cole et al. (2000)	
F_{stab}	<i>F_{stab}</i> 0.9 0.9-1.1		Р	Threshold for instability		
Galaxy mergers					Jiang et al. (2008)	
Size of merger remnants					Cole et al. (2000)	
$f_{\rm orbit}$ 0		0 - 1	S	orbital energy contribution	Eq. 19	
$f_{ m DM}$	2 - S dark matter fraction in galaxy mergers					
Starburst triggering in mergers					Baugh et al. (2005)	
$f_{ m ellip}$	0.3	0.2 - 0.5	Р	Threshold on mass ratio for major merger		
$f_{ m burst}$	0.05	0.05 - 0.3	Р	Threshold on mass ratio for burst		
Dust model					Granato et al. (2000)	
$f_{ m cloud}$	0.5	0.2 - 0.8	Р	fraction of dust in clouds		
$t_{ m esc}$	1Myr	1 - 10 Myr	Р	escape time of stars from clouds		
β_b	1.5	1.5 - 2	S	sub-mm emissivity slope in starbursts	ursts Eq. A17	

The Planck Millennium N-body

$\Omega_{\rm M}$	Ω_{b}	<i>n</i> _{spec}	h	σ_8	$L_{\rm box} \ (h^{-1}{ m Mpc})$	Np	$M_{ m p} \ (h^{-1}{ m M}_{\odot})$	${M_{ m h}\over (h^{-1}M_{\odot})}$	Label
0.25	0.0455	1.0	0.73	0.9	500	2160 ³	8.56×10^{8}	1.71×10^{10}	MSI
0.25	0.0455	1.0	0.73	0.9	100	2160^{3}	6.86×10^{6}	1.37×10^{8}	MSII
0.272	0.0455	0.961	0.704	0.801	500	2160^{3}	9.31×10^{8}	1.86×10^{10}	WM7
0.307	0.0483	0.967	0.678	0.829	542.16	5040 ³	1.06×10^{8}	2.12×10^{9}	PMILL

- Planck cosmology
- 800 Mpc box
- 512x EAGLE volume
- 271 outputs
- 128 billion particles
- 1.06e+08/h Msun particle mass
- 2.12e+09/h Msun halo mass
- Almost x10 better halo resolution than Millennium
- 7 million CPU hours (inc SUBFIND runtime)
- One snapshot 32Tb

PLANCK MILLENNIUM

Planck versus Millennium cosmology

(image from Rodrıguez-Puebla et al. 2016)

Change cosmology and use full resolution of P-Mill trees

UV LF at $z \sim 10$ Oesch et al. 2017 (arXiv:1710.11131)

"The only model that is in close agreement with the observed number counts and also with the observed LF is the one based on GAL-FORM presented in Cowley et al. (2017)."

Predictions for deep galaxy surveys with JWST from ΛCDM Cowley et al. 2018 MNRAS 474 2352 (arXiv:1702.02146)

Results

Changing exposure time & FoV

NIRCam $2\mu m$

MIRI 5.6 μ m

For given science goals model predictions can inform observing strategy

Predictions for deep galaxy surveys with JWST from ΛCDM Cowley et al. 2018 MNRAS 474 2352 (arXiv:1702.02146)

CALCULATION OF EMISSION LINES IN GALFORM

(e.g. Gonzalez-Perez et al 2018)

Impact of emission lines on NB flux

GALFORM + WMAP7 Millennium run : PAU survey lightcone

Stothert et al. 2018

Connecting galaxies to mass

Η-α

H-band

Orsi et al. 2010

Spatial distribution of OII emitters

Oll emitters DM haloes: ranked by mass

Gonzalez-Perez et al. 2018 arxiv:1708.07628

$H\alpha HOD \text{ output} by GALFORM$

Ben Clarke L4 project

Ongoing work by Alex Merson+: Hα galaxy HODs from Galacticus

- At $z^{1.45}$ for $f^{2} \times 10^{-16}$ erg/s/cm⁻² expect one H α -emitting galaxy per ~100 DM halos.
- Next step: use HODs and LFs to predict Hα galaxy bias as function of redshift and luminosity.

Merson et al. (in prep.)

- Can be used to produce mocks for Euclid
- Can use HOD predicted by GALFORM or another SAM to populate MXXL halos
- Essentially all H-alpha galaxies are in resolved halos
- Could add second property e.g. extinction, SED using Smith et al approach, in addition to H-alpha luminosity

Summary

- Emission luminosity depends on Lyman continuum photons and HII region model
- Number of Lyman continuum photons depends on metallicity & SF history
- Also need to include dust extinction
- HOD for Euclid flux limits: <N> << 1
- Smith et al. : HOD method including L + property
- Applied to MXXL halo lightcone
- Will apply to H-alpha HODs from GALFORM an Galacticus (Alex Merson et al.) to populate MXXL

HOD of H- α emitters at z=2.23

370 emitters, ~2sq deg z=2.23 Geach et al. 2012 arXiv:1206.4052

Dependence of SFR & Lyman continuum photons on host halo mass

Hα emitter number counts predictions of GALFORM models

Dust extinction in GALFORM

Observers typically assume fixed 1 magnitude dust extinction

GALFORM calculates the dust extinction of every galaxy using dust grain model and distribution of sizes.

In one simulation sub volume, for galaxies brighter than 10^41 erg/s, 13.3% (3385 out of 25315) show more dust extinction than 1 magnitude (marked by the red dashed line).

Difu Shi PhD Thesis

SAMs vs gas simulations

Schaye et al. 2015