Dust Extinction in Star-forming Galaxies from near-IR Spectroscopy

Domínguez et al. 2013, ApJ, 763, 145

Alberto Domínguez

(Grupo de Altas Energías, Universidad Complutense de Madrid)

in collaboration with Brian Siana (UC Riverside) & the WISP team

> ESAC, Madrid, April 23-25, 2018

What is and where is dust produced?

Effects of the interstellar dust

Methodologies for studying dust extinction

UV slopes and infrared observations that probes stellar-continuum extinction (e. g. Meurer et al. 1999; Reddy et al. 2010; Bouwens et al. 2011)

Methodologies for studying dust extinction

Emission-line ratios such as Balmer emission lines that probes HII-regions extinction (e. g. Kennicutt et al. 1992; Hopkins et al. 2001; Brinchmann et al. 2004; Garn & Best 2010).

	Transition of n	3 → 2	4 → 2	5 → 2	6 → 2				
	Name	Ηα	Ηβ	Ηδ	Hγ				
	Wavelength (Á)	6563	4861	4341	4102				
Balmer series									
$E(B-V) = \frac{1}{k}$	$\frac{2.5}{(\lambda_{H\beta}) - k(\lambda_{H\alpha})} \log$	$g_{10}\left[\frac{(H\alpha)}{(H\alpha)}\right]$	$(H\beta)_{obs}$ $(H\beta)_{int}$	20		Allen (MW) Seaton (MW) Fitzpatrick (LMC) Prevot (SMC)			
he Balmer decrement of S ent Groves, ^{1,2*} Jarle Brinchma iden Observatory, Leiden University, PO Box 9513, 23 ax Planck Institute for Astronomy, Königstuhl 17, D-69 trophysikalisches Institut Potsdam, An der Sternwarte 1	Joan Digital Sky Survey galaxies ann ¹ and Carl Jakob Walcher ³ ^{07 RA Leiden, the Netherlands ^{117 Heidelberg, Germany} 6, D-14482 Potsdam, Germany}			(रें 10 जू		Calzetti (SB)			
epted 2011 September 9. Received 2011 September 9;	in original form 2011 April 26	Empirical from F	extinction Ivperz man	curves o ^[1] ual	0] 10 ⁺ λ[Å]			

Т

Dust extinction at z>0.5 from emission-line ratios

Sobral et al. 2012 at $z \sim 1.5$ \rightarrow H α /[O II] with [O II] being significantly dependent on metallicity.

Ly et al. 2012 at $z \sim 0.5 \rightarrow$ combination of photometry and spectroscopy

The WFC3 Infrared Spectroscopic Parallel (WISP) survey

- Pure parallel Hubble Space Telescope program (PI Matthew Malkan, UCLA) with more than 1500 orbits, approximately 390 high-latitude fields observed so far.

- The faintest galaxies are 3 times fainter than galaxies previously studied at $z \sim 1.5$.

GRISMS near-IR spectroscopy

G102: $0.80 \le \lambda \le 1.17 \ \mu m$ (R ~ 210) G141: $1.11 \le \lambda \le 1.67 \ \mu m$ (R ~ 130) Direct-imaging photometry: F475X, F600LP, F110W, F160W and IRAC 3.6 µm

The WFC3 Infrared Spectroscopic Parallel (WISP) survey

Example of different spectral features in one G141 grism image.

Field of view IR Channel: 123 x 136 arcsec

The WISP survey

Atek et al. 2010

The WISP survey

Atek et al. 2010

General properties of WISP galaxies

EW versus flux signal/noise

Colbert et al. 2013

Galaxy spectra stacks at $0.75 \le z \le 1.5$

312 galaxies in 17 fields where both H α and H β fall simultaneously in the WISP spectral coverage \rightarrow 128 galaxies after cleaning

Halpha Luminosities vs. Stellar Masses

Balmer decrement vs. Halpha Luminosities

Galaxy spectra stacks at $0.75 \le z \le 1.5$

312 galaxies in 17 fields where both H α and H β fall simultaneously in the WISP spectral coverage \rightarrow 128 galaxies after cleaning

Luminosity bins

Rest-frame wavelength [Å]

Galaxy spectra stacks at $0.75 \le z \le 1.5$

312 galaxies in 17 fields where both H α and H β fall simultaneously in the WISP spectral coverage \rightarrow 128 galaxies after cleaning

Emission-line contamination

- H α and H β absorption (~ 25% in H β); BC03 models

Emission-line contamination

- H α and H β absorption (~ 25% in H β); BC03 models
- [N II] (~ 15% in the worst case); Erb et al. 2006

TABLE 2 Oxygen Abundances and Gas Fractions								
Bin	Stellar Mass ^a $(10^{10} M_{\odot})$	$F_{\rm H\alpha}^{\ \ b}$ (10 ⁻¹⁷ ergs s ⁻¹ cm ⁻²)	$F_{[N II]}^{b}$ (10 ⁻¹⁷ ergs s ⁻¹ cm ⁻²)	N2 ^c	$12 + \log \left(\text{O/H} \right)^{\text{d}}$	${M_{ m bar}}^{ m e}_{(10^{10} M_{\odot})}$	$\mu_{ m gas}^{~~{ m f}}$	${\mathcal{Y}_{ ext{eff}}}^{ extbf{g}}$
1	0.27 ± 0.15	20.5 ± 0.5	<1.2	<-1.22	<8.20	2.7 ± 1.7	0.85 ± 0.12	< 0.027
2	0.71 ± 0.17	13.9 ± 0.3	1.4 ± 0.2	$-1.00\substack{+0.07\\-0.09}$	$8.33^{+0.07}_{-0.07}$	2.1 ± 0.6	0.63 ± 0.12	0.013 ± 0.003
3	1.5 ± 0.3	18.7 ± 0.4	2.7 ± 0.3	$-0.85^{+0.05}_{-0.06}$	$8.42^{+0.06}_{-0.05}$	3.2 ± 1.1	0.48 ± 0.19	0.010 ± 0.002
4	2.6 ± 0.4	15.9 ± 0.4	2.6 ± 0.3	$-0.78\substack{+0.05\\-0.05}$	$8.46_{-0.05}^{+0.06}$	4.0 ± 0.9	0.33 ± 0.12	0.007 ± 0.001
5	4.1 ± 0.6	24.3 ± 0.5	5.3 ± 0.4	$-0.66\substack{+0.03\\-0.04}$	$8.52_{-0.05}^{+0.06}$	6.6 ± 1.1	0.36 ± 0.10	0.009 ± 0.002
6	10.5 ± 5.4	27.0 ± 0.4	7.4 ± 0.3	$-0.56\substack{+0.02\\-0.02}$	$8.58_{-0.04}^{+0.06}$	13.1 ± 5.6	0.22 ± 0.11	0.007 ± 0.001

^a Mean and standard deviation of stellar mass from SED fitting; we use a Chabrier (2003) IMF.

^b Fluxes of H α and [N II] λ 6584 from the composite spectra.

^c N2 $\equiv \log (F_{[N II]}/F_{H\alpha}).$

^d Oxygen abundance from N2, using the calibration of Pettini & Pagel (2004).

^e Mean and standard deviation of the baryonic mass $M_{gas} + M_{\star}$, with gas masses determined from the Schmidt law as described in the text.

^f Mean and standard deviation of the gas fraction $\mu = M_{gas}/(M_{gas} + M_{\star})$.

^g Effective yield $y_{\text{eff}} = Z/\ln(1/\mu)$.

Erb et al. 2006

Emission-line contamination

- Hα and Hβ absorption (~ 25% in Hβ); BC03 models
- [N II] (~ 15% in the worst case); Erb et al. 2006
- AGNs; BPT diagram

Balmer decrements at z ~ 1

Balmer decrement versus Halpha luminosity, galaxy stellar mass, and Halpha EW

Important Conclusion: Typical assumption of assuming constant extinction for all luminosity overestimate the extinction for faint galaxies.

[OIII]/Halpha ratios

The future of near-IR surveys from space

Summary and Conclusions

1.- The Balmer decrement is correlated with observed H α luminosity and galaxy stellar mass at $z \sim 1$. The faintest galaxies are consistent with no dust extinction.

2.- Clear evolution of dust extinction where for a given observed H α luminosity, galaxies are significantly less extinguished at higher redshifts. No evolution is found with galaxy stellar mass.

3.- The typical procedure of assuming a constant extinction for all luminosity significantly overestimate extinction for the lower luminosity galaxies.

4.- The H α /[O III] ratio is dependent on observed H α luminosity.

5.- WISP will improve these measurements in the near future.

6.- EUCLID and WFIRST will improve these measurements in the longer term future.

Backup

Backup

Table 1Emission-line Ratios of Stacked Spectra in $0.75 \leq z \leq 1.5$								
$\langle \log_{10} X \rangle$	$g_{10} X$ ([S II] λ6717 + λ6732)/Hα λ6563 [O III] λ5007/Hβ							
	Stacks binned in H α luminosity, $X = L_{H\alpha}/\text{erg s}^{-1}$							
$\overline{41.57^{+0.48}_{-0.23}}$	0.14 ± 0.04	4.65 ± 1.10						
$41.91_{-0.13}^{+0.11}$	0.14 ± 0.03	2.55 ± 0.66						
$42.33_{-1.05}^{+0.29}$	0.23 ± 0.02	3.37 ± 1.18						
Stacks binned in galaxy stellar mass, $X = M_*/M_{\odot}$								
$8.56^{+1.38}_{-0.58}$	0.08 ± 0.03	5.58 ± 1.32						
$9.51_{-0.34}^{+0.35}$	0.28 ± 0.03	1.95 ± 0.44						
$10.46\substack{+0.61 \\ -1.40}$	0.21 ± 0.03	2.15 ± 0.92						
	Stacks binned in H α equivalent width, $X = \text{EW}_{\text{H}\alpha}/\text{\AA}$							
$1.73^{+0.51}_{-0.22}$	0.24 ± 0.03	2.58 ± 0.84						
$2.07^{+0.11}_{-0.11}$	0.26 ± 0.03	2.91 ± 0.69						
$2.47_{-0.86}^{+0.28}$	0.04 ± 0.03	5.89 ± 1.63						

Note. These are the values for plotting the BPT diagram shown in Figure 6.

Backup

	Table 2 Dust Properties for WISP Galaxies								
N ^a	$\langle \log_{10}(X) \rangle$	$H_{lpha}/H_{eta}{}^{\mathrm{b}}$	$H_{lpha}/H_{eta}{}^c$	$H_{lpha}/H_{eta}{}^{ m d}$	$\frac{E(B-V)^{\rm e}}{\rm (mag)}$	$A_{\mathrm{H}\alpha}{}^{\mathrm{e}}$ (mag)	A _V ^e (mag)		
		Gala	axy spectra stacked i	n H α luminosity, X	$\equiv L_{\mathrm{H}\alpha}/\mathrm{erg}\mathrm{s}^{-1}$				
43	$41.57_{-0.48}^{+0.23}$	3.99 ± 0.95	3.51 ± 0.85	3.29 ± 0.82	0.12 ± 0.21	0.40 ± 0.71	0.48 ± 0.86		
43	$41.91_{-0.11}^{+0.13}$	4.14 ± 1.03	3.59 ± 0.91	3.08 ± 0.79	0.06 ± 0.22	0.21 ± 0.73	0.25 ± 0.89		
42	$42.33_{-0.29}^{+1.05}$	8.84 ± 2.66	5.84 ± 1.86	5.01 ± 1.60	0.48 ± 0.27	1.59 ± 0.98	1.94 ± 1.17		
		(Galaxy spectra stack	ed in stellar mass, X	$T \equiv M_*/M_{\odot}$				
43	$8.56_{-1.38}^{+0.58}$	3.92 ± 0.93	3.66 ± 0.87	3.49 ± 0.85	0.17 ± 0.21	0.57 ± 0.71	0.69 ± 0.85		
43	$9.51_{-0.35}^{+0.34}$	5.16 ± 1.10	3.99 ± 0.88	3.50 ± 0.78	0.17 ± 0.19	0.57 ± 0.65	0.70 ± 0.78		
42	$10.46^{+1.40}_{-0.61}$	6.80 ± 2.79	5.52 ± 2.29	4.46 ± 1.86	0.38 ± 0.36	1.26 ± 1.22	1.54 ± 1.47		
		Galaxy spe	ctra stacked in rest-f	frame H α equivalent	width, $X \equiv EW_{H\alpha}$	/Å			
43	$1.73_{-0.51}^{+0.22}$	6.93 ± 2.16	3.86 ± 1.36	3.18 ± 1.13	0.09 ± 0.30	0.30 ± 1.01	0.36 ± 1.23		
43	$2.07_{-0.11}^{+0.11}$	3.96 ± 0.90	3.46 ± 0.80	3.05 ± 0.72	0.06 ± 0.20	0.19 ± 0.67	0.23 ± 0.81		
42	$2.47_{-0.28}^{+0.86}$	5.69 ± 1.58	4.88 ± 1.37	4.72 ± 1.35	0.43 ± 0.24	1.42 ± 0.88	1.73 ± 1.05		

Notes. All observables are given for nebular properties.

^a N is the number of stacked galaxy spectra in the bin.

^b No correction applied.

^c Corrected only for H α and H β absorption lines (see Section 2.6).

^d Corrected for H α and H β absorption lines and [NII] contamination (see Section 2.6).

^e Calculated from the absorption line and [NII] corrected Balmer decrements.

The Equivalent width concept

Santini's lecture

Other WISP science topics (1/3)

Other WISP science topics (2/3)

Discovery of Three Distant Cold Brown E

Atek et al. (2014)

Masters et al. (2012)

Other WISP science topics (3/3)

The WISP survey

Atek et al. 2010

The WISP survey

Atek et al. 2010

Stellar vs. nebular extinction

Stellar extinction versus nebular extinction