A Model for [NII] $/H\alpha(M,z)$

Empirical Modeling of the Redshift Evolution of the [NII]/H α ratio for Galaxy Redshift Surveys and Simulations

Andreas Faisst (Caltech/IPAC) afaisst@caltech.edu

💆@astrofaisst

D. Masters (*JPL*), Y. Wang (*Caltech/IPAC*), A. Merson (*JPL*), P. Capak (*Caltech/IPAC*), S. Malhotra (*Arizona SU*), J. Rhoads (*Arizona SU*)

Simulated Skies, Madrid, April 25 2018

Why do we care about the [NII]/H α ratio

- Ha is (likely) the strongest optical emission line: used to probe cosmology and astrophysical properties of galaxies
- ► Ha is blended with [NII] for R < 800 ([NII] can be strong)

Why do we care about the [NII]/H α ratio

- Ha is (likely) the strongest optical emission line: used to probe cosmology and astrophysical properties of galaxies
- ► Ha is blended with [NII] for R < 800 ([NII] can be strong)

COSMOLOGY & SIMULATIONS

- Realistic simulated
 observations for future
 surveys (Euclid and WFIRST)
 (A. Merson's talk)
- Correct for systematic offset in redshift measurement from ([NII]+Ha) for Euclid (many talks on Monday)

Why do we care about the [NII]/H α ratio

- Ha is (likely) the strongest optical emission line: used to probe cosmology and astrophysical properties of galaxies
- ► Ha is blended with [NII] for R < 800 ([NII] can be strong)

COSMOLOGY & SIMULATIONS

- Realistic simulated
 observations for future
 surveys (Euclid and WFIRST)
 (A. Merson's talk)
- Correct for systematic offset in redshift measurement from ([NII]+Ha) for Euclid (many talks on Monday)

GENERAL ASTROPHYSICS

- Deblended intrinsic Ha LF from low-resolution spectroscopic (grism) and narrow-band surveys
- Probe mass assembly with accurate star-formation rates from Ha
- Plan future galaxy surveys

Depends on various galaxy properties such as <u>metallicity</u>, stellar mass, star-formation activity, ...

Maiolino+08

Depends on various galaxy properties such as metallicity, <u>stellar mass</u>, star-formation activity, ...

Masters+16 Kashino+16

Dependencies of [NII]/H α ratio

Depends on various galaxy properties such as metallicity, stellar mass, <u>star-formation activity</u>, ...

- ► The BPT-diagram combines dependencies of [NII]/Ha
- Strongest and perpendicular: stellar mass and sSFR!

- ► The BPT-diagram combines dependencies of [NII]/Ha
- Strongest and perpendicular: stellar mass and sSFR!
 <u>Stellar Mass</u>

see also: Shapley+15, Masters+16, Strom+17

- ► The BPT-diagram combines dependencies of [NII]/Ha
- Strongest and perpendicular: stellar mass and sSFR!
 <u>Stellar Mass</u>
 <u>specific SFR</u>

- ► The BPT-diagram combines dependencies of [NII]/Ha
- Strongest and perpendicular: stellar mass and sSFR!
 <u>Stellar Mass</u>
 <u>specific SFR</u>

- ► The BPT-diagram combines dependencies of [NII]/Ha
- Strongest and perpendicular: stellar mass and sSFR!
 <u>Stellar Mass</u>
 <u>specific SFR</u>

► The BPT-diagram combines dependencies of [NII]/Ha

Redshift evolution of the specific SFR (sSFR)

Significantly higher sSFR at high redshifts

► The BPT-diagram combines dependencies of [NII]/Ha

► The BPT-diagram combines dependencies of [NII]/Ha

Shapley+15, Masters+16, Strom+17

see also:

Dependencies of [NII]/H α ratio: the BPT-diagram encies of NII/Ha ► The BPT-diagram combines dep Strom+2017 0.7 0.5 0.3 0.1 $\log ([OIII]/H\beta)$ 0.5 -0.1 0.0 log (sSFR / yr⁻¹) -0.5-0.3 -1.0z = 1.6-0.5-1.5-2.0-0.7**BPT main-sequence locus:** -0.9 SDSS (local) "BPT main-sequence" Kashino+17 (z ~ 1.6) Steidel+14 (z ~ 2.3) z=0-1.1 see also: Shapley+15, -1.6-1.4-1.2-1.0-0.8-0.6 -0.4Masters+16, $\log([NII]/H\alpha)$

Strom+17

2-D fit of *M* dependence of BPT diagram at z=0

1-D fit of "BPT main-sequence" as function of *z* at 0<z<2.3

2-D fit of *M* dependence of BPT diagram at z=0

1-D fit of "BPT main-sequence" as function of *z* at 0<z<2.3

1-D fit of "BPT main-sequence" as function of z at 0 < z < 2.3

2-D fit of M dependence of BPT diagram at z=0

Empirical model for [NII]/Ha ratio as function of *M* and *z*. (0 < z < 2.5) $(9 < \log M < 11)$

1-D fit of "BPT main-sequence" as function of z at 0 < z < 2.3

2-D fit of M dependence of BPT diagram at z=0

Empirical model for [NII]/Ha ratio as function of *M* and *z*. (0 < z < 2.5) $(9 < \log M < 11)$

Model for the (*M*,*z*) dependence of [NII]/Ha for 0 < z < 2.5
Recipe for Simulators and Observers

Model for the (*M*,*z*) dependence of [NII]/Ha for 0 < z < 2.5
Recipe for Simulators and Observers

Model for the (*M*,*z*) dependence of [NII]/Ha for 0 < z < 2.5
Recipe for Simulators and Observers

Model for the (*M*,*z*) dependence of [NII]/Ha for 0 < z < 2.5
Recipe for Simulators and Observers

Model for the (*M*,*z*) dependence of [NII]/Ha for 0 < z < 2.5
Recipe for Simulators and Observers

\log	(M/M_{\odot})	$\operatorname{Redshift}$													
		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6
WISPs assumption (29%)	8.5	0.07	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.04
	8.7	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05
	8.9	0.10	0.10	0.09	0.09	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.06	0.06	0.06
	9.1	0.12	0.12	0.11	-0.11	0.10	0.19	0.09	0.09	- 0.08	0.08	-0.08	0.07	0.07	0.07
	9.3	0.16	0.15	0.14	0.13	0.13	0 12	0.11	0.11	0.10	0.10	0.09	0.09	0.08	0.08
	9.5	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.10	0.09
	9.7	0.26	0.25	0.24	0.23	0.21	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.11	0.11
	9.9	0.28	0.28	0.28	0.28	0.26	0.24	0.22	0.20	0.18	0.16	0.15	0.14	0.13	0.13
	10.1	0.30	0.30	0.31	0.31	0.31	0.30	0.28	0.25	0.22	0.20	0.18	0.17	0.16	0.15
	10.3	0.31	0.32	0.32	0.33	0.33	0.34	0.33	0.32	0.29	0.25	0.22	0.20	0.19	0.17
	10.5	0.32	0.33	0.34	0.34	0.35	0.36	0.36	0.36	0.35	0.32	0.28	0.25	0.22	0.21
	10.7	0.33	0.34	0.35	0.36	0.36	0.37	0.38	0.39	0.39	0.38	0.35	0.31	0.27	0.24
	10.9	0.34	0.35	0.35	0.36	0.37	0.39	0.40	0.41	0.42	0.42	0.42	0.38	0.33	0.29
	11.1	0.34	0.35	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.45	0.41	0.36

A Happy Swiss Cow

Almost Coffee time!

Use Case I: [NII] Contamination Distribution

- Based on realistic stellar mass distribution for *Euclid/WFIRST*
- On average 20% with large (factor 2) range
- Bimodal distribution!

Use Case I: [NII] Contamination Distribution

- Based on realistic stellar mass distribution for *Euclid/WFIRST*
- On average 20% with large (factor 2) range
- Bimodal distribution!

0.6

0.5

0.4

0.3

0.2

0.1

0.0

B

0.5

0.7

0.9

1.1

1.3

1.5

redshift

1.7

 $[NII]/([NII] + H\alpha)_{tot}$

WISPS assumption (29% contamination)

2.1

2.3

2.5

Faisst+2018

1.9

Use Case II: Systematic Redshift Bias

- Spectroscopic redshift
 bias from [NII]
 contamination
- Increasing with M and decreasing with z
- Becomes important at log(M) > 10.3
- ➤ Up to 300km/s (0.1%) for log(M)=11.0 (still better than required)

Use Case II: Systematic Redshift Bias

- Spectroscopic redshift
 bias from [NII]
 contamination
- Increasing with M and decreasing with z
- Becomes important at log(M) > 10.3
- ➤ Up to 300km/s (0.1%) for log(M)=11.0 (still better than required)

Euclid is sensitive here!

- ► Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

- ► Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

- Observed ([NII]+Ha) LF (Colbert+13)

- ► Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

— Observed ([NII]+Ha) LF (Colbert+13)

- Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

— Observed ([NII]+Ha) LF (Colbert+13)

Intrinsic Ha LF (M, z dependent [NII] cont.)

- Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

— Observed ([NII]+Ha) LF (Colbert+13)

Intrinsic Ha LF (M, z dependent [NII] cont.)

- Large impact on steep bright (= massive) end of Ha LF
- Stronger [NII] in massive galaxies requires larger correction

— Observed ([NII]+Ha) LF (Colbert+13)

Intrinsic Ha LF (M, z dependent [NII] cont.)

Summary

Faisst et al. 2018: Empirical model for [NII]/Ha(M,z): Can be used by simulators and observers!

- Simple to use (M and z straightforward to determine)
- Accurate (incorporates many physical relations naturally)
- Redshift and stellar mass dependence of [NII]/Ha ratio has to be taken into account: For massive galaxies and low redshifts.
 - Correct redshift bias due to [NII] contamination
 - Use in **simulations** to derive ([NII]+Ha) number densities
 - Derive deblended Ha LF from observations