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EXES	aboard SOFIA
SOFIA: A	Stratospheric
Observatory for	Infrared
Astronomy (NASA/DLR)
- Boeing	747	+	3.5m	telescope
- First	operation:	2010
- Limitation:	poor image	

capability (3	arcsec)

EXES: Echelon	Cross-Echelle	
spectrograph
- PI:	M.J.	Richter,	UC	Davis,	CA
- l range:	4.5	– 28.3	µm,	
- R =	105,	15000,	4000
- Heritage:	TEXES	at IRTF
- First	operation:	2014
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Why study D/H	on	Mars	?
• An	indicator of	the	loss of	water	over	the	history of	Mars,	through

differential escape	->	A	diagnostic	of	past water	content	
– Owen	et	al.	1988:	D/H	=	6	+/- 3		x	VSMOW
– Several attempts (1997-2015):	D/H	in	the	range	4	– 5	x	VSMOW
– Villanueva	et	al.	2015:	D/H	mapping ->Strong variations	over	the	
Martian disk (<3	->8	x	VSMOW)

– >	Objective	of	the	present study:	To	obtain a	D/H	value	averaged
over	location	and	seasons

• An	indicator of	the	water	cycle through fractionation due	to	
differential condensation	processes

• ->	A	diagnostic	of	the	water	cycle	and	exchange	with surface	
– Expected mechanism:	Vapor Pressure	Isotopic Effect (VPIE),	
Montmessin et	al.	Icarus 2005

– >	To	be checked by	the	present study 3



D/H	Observations	of	Mars	with EXES/SOFIA
Objective: Simultaneous mapping of	H2O	and	HDO	in	the	thermal	infrared
(1383-1390	cm-1 (7.19	– 7.23	µm)	+	1326-1338	cm-1 (7.47	– 7.54	µm)
Four	flights:			April	8,	2014	(Encrenaz et	al.	AA	2016),	

March	16	&	24,	2016	and	January 24,	2017	(AA	2018,	in	press)
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DDate Ls DMars
diameter
(arcsec)

DSub-Obs
longitude	(°W)

Spectral range				
(cm-1)ar

April	8,	2014 113° 15 160 1383-1390

March	16,	
2016

123° 10 250 1326-1338

March	24,	
2016

127° 11 167 1383-1391

January 24,	
2017

304° 5.2 350 1326-1338

January 24,	
2017

304° 5.2 357 1383-1391
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April	2014	– Ls =	113°
Integrated disk
H2O	=	240	+/- 53	ppmv,	HDO	=	350	+/- 14	ppbv
D/H	=	4.4	(+1.0,-0.6)	x	VSMOW

Northern region
H2O	=	400	+/- 68	ppmv,	HDO	=	650	+/- 20	ppbv
D/H	=	4.7	(+0.8,-0.6)	x	VSMOW

Southern region
H2O	=	125	+/- 68	ppmv,	HDO	=	150	+/- 15	ppbv
D/H	=	3.9	(+1.5,-0.8)	x	VSMOW
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Fig. 16. Top: map of the D/H ratio in VSMOW units retrieved from the EXES data recorded on April 8, 2014 (Ls = 113�, same as Fig. 13, bottom).
Bottom: map of the D/H mixing ratio (in VSMOW units) retrieved by Villanueva et al. (2015) in January 2014 for Ls = 80 deg and 83 deg. The
left map of Villanueva et al. (2015) matches the longitude range covered by the EXES observations.

EXES observations (Central Meridian at 205 E). The mean
global D/H reported by Krasnopolsky (2015), integrated over
the disk and over time, is 4.6+/�0.7 VSMOW, in good agree-
ment also with the EXES result.

The EXES maps of HDO and H2O can be compared with the
GCM predictions and with previous observations. In the case
of the HDO map, a comparison can be made with the results
recorded by the TEXES imaging spectrometer on the IRTF on
March 1, 2014 (Encrenaz et al. 2015) for Ls = 96�. The map of
the HDO mixing ratio was obtained from the line depth ratio of
a weak HDO transition at 1237.08 cm�1 (8.08 µm) divided by
a weak nearby CO2 line at 1241.58 cm�1 (8.05 µm). Figure 17
shows a comparison of the TEXES and EXES maps, separated
in time by five weeks and in areocentric longitude by 17�. The
overall agreement is satisfactory, both for the HDO mixing ratio
and its global distribution over the disk. Figure 17 also shows
a comparison of the two HDO maps with the predictions of the
GCM (Montmessin et al. 2005). For both the EXES and TEXES

data, the agreement is satisfactory except at the north pole where
the GCM prediction is higher than the observed one (by both
TEXES and EXES) by a factor of 1.5 to 2 over a region as large
as the EXES spatial resolution.

Our H2O map can also be compared with previous obser-
vations. The EXES map of H2O is consistent with the map of
Villanueva et al. (2015) for Ls = 80�83�. For Ls = 113�, the
TES data aboard Mars Global Surveyor (Smith 2004) indicate
an H2O column density ranging from 4 pr-µm at 30S latitude
to 12 pr-µm at the equator and 40 pr-µm at 60N latitude. In
our model, these numbers correspond to 77 ppmv, 204 ppmv,
and 680 ppmv at 30S, 0, and 70N latitudes, respectively. At
30S and 0 latitude, these numbers are consistent with our re-
sults, taking the error bars into account. At high northern lat-
itudes, the TES value is higher than our result by about 30%.
The same comment applies to the comparison of our EXES map
with the predictions of the GCM (Forget et al. 1999, Fig. 18).
The EXES values are consistent with the GCM values, except in

A62, page 10 of 12

D/H	on	Mars	with EXES	– April	2014	– Ls =	113°
D/H	map obtained from HDO/H2O	line	depth ratio

Villanueva	et	al.	2015



March	2016	&	January 2017:	H2O	&	HDO	transitions
(integrated disk)
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Fig. 13. Top: map of the H
2 O volume mixing ratio (in ppmv) retrieved

from the EXES data recorded on April 8, 2014 (Ls = 113 �), converted

from the H
2 O/CO

2 line depth ratio (see text). Bottom: map of the HDO

volume mixing ratio (in ppbv) retrieved from the same data, converted

from the HDO/CO
2 line depth ratio. The subsolar point is indicated by

a white dot.The D/H ratio can be inferred from the line depth ratio of the

HDO and H
2 O lines. This method has the advantage of remov-

ing the uncertainties associated with the thermal structure and

the geometry as much as possible and of minimizing the uncer-

tainties associated with the terrestrial atmospheric transmission.

The validity of the linearity method is discussed below. We de-

rive D/H (VSMOW
units) = 4.60 ⇥ ldr (HDO/H

2 O). Figure 14

shows the map of the D/H ratio on Mars in line depth ratio units

and in VSMOW
units.

5. Linearity of the mixing ratios with the line depth

ratiosWe have shown in our previous analyses (Encrenaz et al. 2008,

2015) that the mixing ratio of two atmospheric species can be

directly inferred from the ratio of their line depths provided that

the lines are weak with line depths less than about 10% to 15%.

This assumption also requires that the two species are homoge-

neously mixed and that the temperature contrast between the sur-

face and the atmosphere is su�cient. Near terminator, at night,

before dawn, or after sunset, these conditions may not be filled

(Encrenaz et al. 2015). In the present case, observations are made

near opposition, and the full dayside of Mars is observed, so this

condition is fulfilled.

However, a departure from linearity is expected to occur be-

cause the CO
2 line depth is about 0.20�0.25, so larger than in

our TEXES analysis. This uncertainty should be reduced on the

measurement of the D/H ratio, as D/H is directly retrieved from

the ratio of the HDO and H
2 O line depths, which both have a line

depth between 5% and 15%. Still, some error may be introduced

Fig. 14. Top: map of the HDO/H
2 O line depth ratio, retrieved from the

EXES data recorded on April 8, 2014 (Ls = 113 �). Bottom: map of the

D/H mixing ratio (in VSMOW units) converted from the HDO/H
2 O line

depth ratio (see text). The subsolar point is indicated by a white dot.

because the individual lines are not optically thin. In addition,

the quantum numbers of the H
2 O and HDO lines used for the

map retrieval are very di↵erent, as shown in Table 1. This di↵er-

ence may introduce systematic uncertainties related to vertical

profiles of temperature and abundances. However, as pointed out

above, both H
2 O and HDO are expected to have similar distribu-

tion: Near northern summer solstice (Ls = 113 �), the atmosphere

is cold and the two species are confined in the lower troposphere,

so this e↵ect is expected to be minor.

Using the thermal profile and the atmospheric param-

eters corresponding to the disk center, we determined the

HDO/H
2 O line depth ratio for a D/H ratio of 4.7 VSMOW

(cor-

responding to the best fit at the center) and for di↵erent values of

the H
2 O volume mixing ratio. Calculations show that a departure

from linearity of 10% is observed for H
2 O mixing ratios of half

and twice the best fit value of 275 ppmv, respectively. The lin-

earity method is thus expected to undersestimate the D/H value

in the southern hemisphere and to overestimate in the northern

hemisphere by a factor of 10%.

6. Uncertainty analysis

We first estimate the instrumental noise in the EXES data.

Figure 15 shows an enlargement of the disk-integrated spectrum

of Mars in the continuum region around 1388.8 cm �1. It can be

seen that the peak-to-peak (3�) noise in the disk-integrated spec-

trum is less than 1%. Since the full disk is covered by 112 pixels,

the 1� noise per pixel is less than 3%. This noise is much lower

than the uncertainty induced by (1) the uncertainty in the instru-

mental function (see Fig. 3) and (2) the uncertainty associated

with the telluric atmospheric transmission.
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D/H	(x	VSMOW) D/H	(x	VSMOW)FOV=	3	arcsec

D/H	on	Mars
April	8,	2014	– Ls =	113° March	24,	2016	– Ls =	127°

Diameter:	15	arcsec Diameter:	11	arcsec
D/H	(VSMOW)
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Latitudinal	variations	of	H2O,	HDO	and	D/H

- H2O	and	HDO	increase from North to	South,	as	expected by	the	
GCM	during southern summer

- Surprise:	D/H	seems to	decrease from North to	South,	in	contrast
to	GCM	predictions ->		????



2.	The	1326-1338	cm-1

spectral	range

- First	objective:	Search for	CH4
(Aoki et	al,	this conference)
- March	16,	2016	(Ls =	123°):	

D/H	retrieved from inversion	RT	
code	using GCM	input

- (Aoki et	al.	A&A	2017)

- H2O	- 1329.98	cm-1

- HDO	- 1326.17	cm-1 H2O HDO
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HDO/H2O wrt VSMOW

HDO/H2O map at Ls=123.2 in MY 33 measured by SOFIA/EXES

(Aoki et al., in prep)
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✓ No significant spatial variation
✓ Relatively low value in the southern hemisphere

HDO/H2O at Ls=123 (MY=33)

- In	agreement	with the	EXES	results at	1383-1391	cm-1 (Ls =	127°)
- In	agreement	with GCM	(Montmessin et	al.	2005)

March	16,	2016	– Ls =	123°



Summary and	conclusions
• The	EXES	observations	of	D/H	show	no	strong variation	

of	D/H	as	a	function of	location	and	season.
• Our	D/H		maps and	disk-integrated values	for	April	2014	

(4.0	x	VSMOW,	Ls =	113°)	and	March	2016	(4.4	x	VSMOW,	
Ls =	127°)	are	consistent	with GCM	predictions and	
earlier measurements.		

• In	January 2017	(Ls =	304°),		the	disk integrated D/H	ratio	
(4.4		x	VSMOW)	is consistent	with the	GCM	and	earlier
measurements.	However,	the	D/H	ratio	shows	an	
unexpected enhancement from South	to	North,	opposite	
to	the	variations	of	H2O	and	HDO	and	the	GCM	
predictions.	

• Two new	sets	of	observations	with EXES/SOFIA	are	
expected in	2018	(S.	Aoki et	al).	


