

UNDERSTANDING THE ORIGIN OF METHANE ON MARS THROUGH ISOTOPIC AND MOLECULAR DATA FROM NOMAD (EXOMARS): WILL THERE BE MORE ANSWERS OR QUESTIONS?

Giuseppe Etiope

National Institute of Geophysics and Volcanology, Rome, Italy

giuseppe.etiope@ingv.it

lstituto Nazionale di Geofisica e Vulcanologia Knowing geologic methane release on Earth is a necessary step towards understanding why and where methane can be on Mars

Geologic and geochemical concepts of methane seepage on Earth....

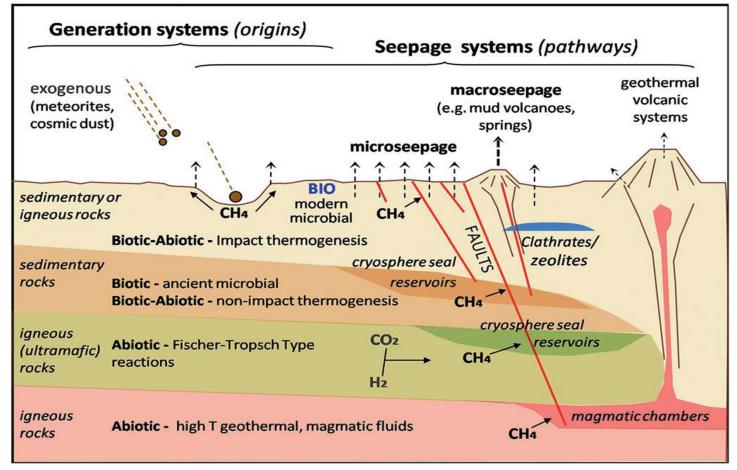
>are used to recognize potential methane release and origin on Mars

NOMAD can

- detect CH4

- measure its stable C isotope ratio (¹³C/¹²C)
- measure the isotopologue $^{13}\mbox{CH}_3\mbox{D}$
- detect ethane (C2H6)

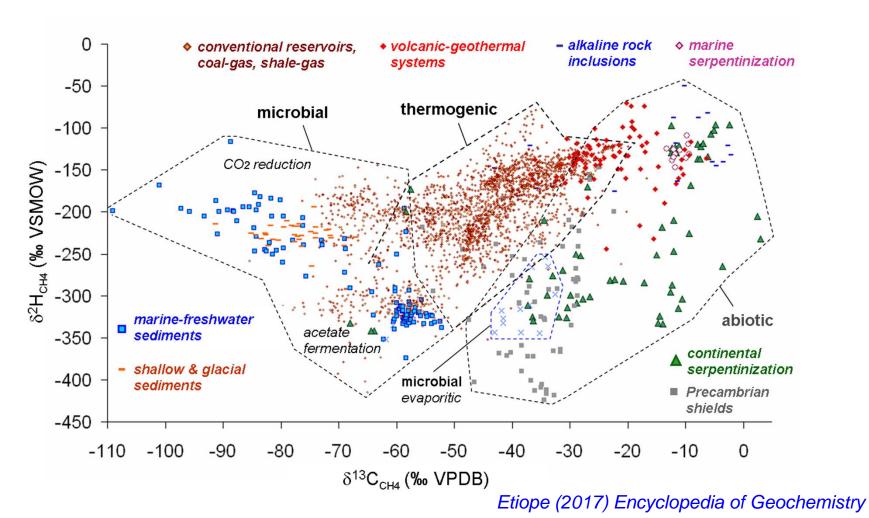
ACS can also detect CH4


Useful parameters to identify the methane origin, which may be biotic or abiotic

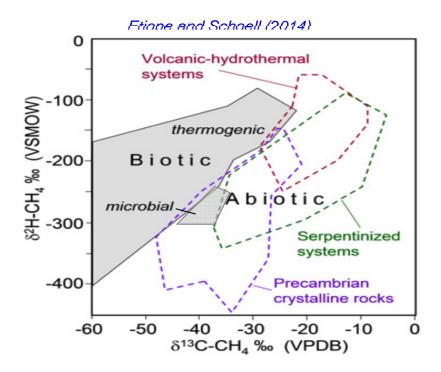
ExoMars programme's scientific objectives n.3 - martian atmospheric trace gases and their sources n.4 - characterisation of the surface environment

Are these parameters sufficient? And how can / should we interpret the values?

Updated scheme of geologic CH₄ sources on Mars (and some definitions)



Oehler and Etiope, 2017


Stable C isotope ratio ¹³C/¹²C

$$\delta^{13}\mathbf{C} = \left(\frac{\left(\frac{^{13}\mathbf{C}}{^{12}\mathbf{C}}\right)_{\text{sample}}}{\left(\frac{^{13}\mathbf{C}}{^{12}\mathbf{C}}\right)_{\text{standard}}} - 1\right) * 1000 \ \text{\%}_{oo}$$

CH4 on Earth

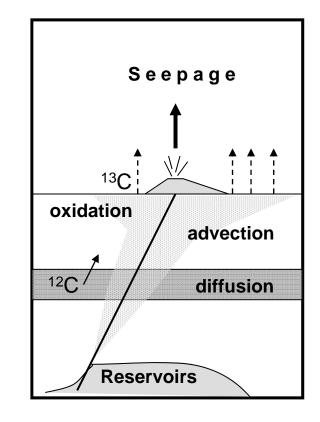
Abiotic CH4 isotopic composition, quite different from biotic gas, but resolved only knowing stable H isotope ratio

¹³C/¹²C similar values for different origins

- **abiotic CH**⁴ is not always ¹³C-enriched, resembling microbial gas (abiotic gas with δ^{13} CCH⁴ as low as -140‰ obtained in laboratory)

- **microbes** can produce ¹²C-depleted CH₄, resembling abiotic gas

¹³C/¹²C of CH4 depends on ¹³C/¹²C of its precursor (carbonate, CO₂), quite variable on Mars

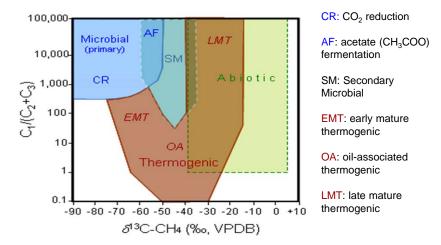

- atmospheric fractionated CO2 (δ^{13} C~+46‰) \Rightarrow very ¹³C-enriched CH4 (regardless the genetic mechanism)
- atm. unfraction. or magmatic CO2 (e.g. Zagami meteor.; δ^{13} C -20 to 0‰) $\Rightarrow \delta^{13}$ C_{CH4} like on Earth

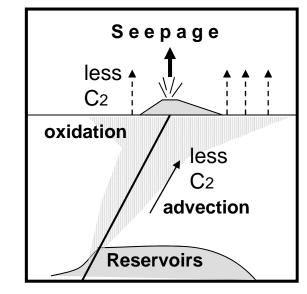
Post-genetic alterations complicate the story

- oxidation (e.g., by hydrogen peroxide in the regolith) can increase $\delta^{13}C$ value, transforming an apparent "microbial" signature into an "abiotic" one

- isotopic fractionation during diffusion in low permeability rocks can lead to ¹²C-enrichment in the released gas

Advection is the dominant mechanism of gas migration to the surface (seepage), but diffusion steps may take place through less permeable, sealing rocks.


Methane/ethane (C1/C2) ratio


ethane (C₂H₆) is also important, although not decisive, for determining gas origin; often considered that high C₁/C₂ ratios indicate microbial CH₄ Wrong!

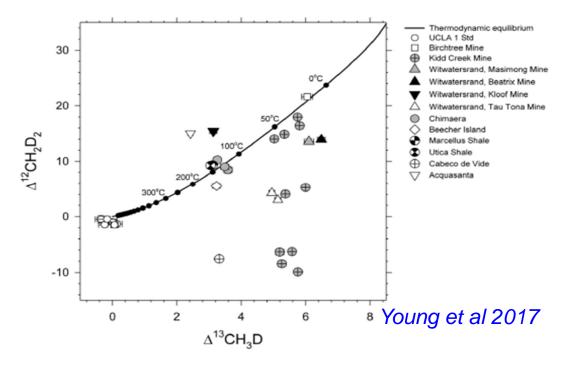
- dry thermogenic gas, in overmature source rocks, may have high C1/C2 ratios, similar to microbial gas
- abiotic gas has a wide range of C1/C2 ratios, overlapping microbial ranges

- molecular fractionation (lost of C2+) during advection $(C_1/C_2 \text{ at the surface > original ratio at the source rock})$
- once in the atmosphere, C₂ is more rapidly oxidised than C₁, resulting in a further increase of the C₁/C₂ ratio

Ethane shall be examined together with other geochemical data, taking into account the geological context

CH4 isotopologue ¹³CH₃D

doubly substituted isotopologue of methane


Several papers claim that isotopologues can identify the origin of methane – not true!

Clumped isotopes can only determine the **temperature** of CH4 formation and only if they are in thermodynamic equilibrium (which happens only at high temperatures)

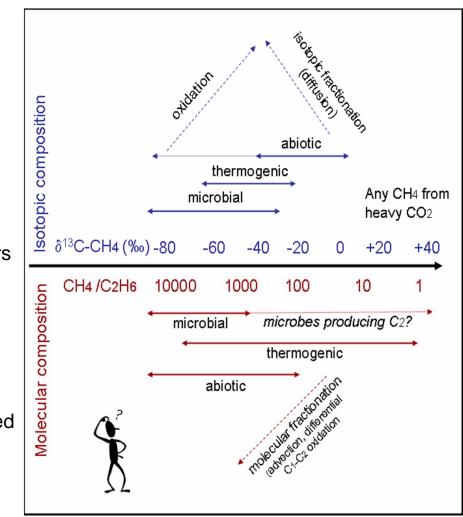
abiotic and microbial gas can be formed at the same T!

They could reveal biological re-processing....but with many assumptions and uncertainties

And the other isotopologue ¹²CH₂D₂ is necessary to understand if there is equilibrium

So, considerable uncertainties in the interpretation of methane origin

 $^{13}C/^{12}C$ of CH₄ could be similar to that on Earth only if it is from unfractionated or magmatic CO₂, or a C precursor with negative $\delta^{13}C$ values


If both C1 and C2 are detected, gas could be abiotic, assuming that

- there are no ethane-producing microbes on Mars
- there is no ancient organic matter in rocks

If ethane is not detected, gas could be:

(a) microbial

- (b) abiotic or thermogenic, molecularly fractionated
- (c) dry thermogenic (overmature)
- (d) abiotic generated at very low T

Conclusions

CH4 isotopic ratio and C1/C2 ratio observable by NOMAD

(a) may have a wide range of values; each value could reflect a number of possible genetic mechanisms (microbial, thermogenic and abiotic).

(b) can be totally different from those of the original gas produced in the subsurface because of post-genetic alterations(the atmosphere is not the best place to study the origin of methane)

Probably we'll get more questions than answers

Only preliminary interpretations can be provided

Hydrogen data from **FREND** neutron detector can also be of support possible associations with hydrated olivine-rich rocks, which may suggest abiotic methane

....but we'll do our best integrating TGO data with geological evaluations