Introduction		M and ICI	High r _{eff}	
00000				

Spatial distribution of retrieved water ice cloud properties at Mars using OMEGA

Kevin S. Olsen^{1,2}, F. Forget¹, J.-B. Madeleine¹, A. Szantai¹, J. Audouard², A. Geminale³, F. Altieri³, F.Oliva³, G. Bellucci³, L. Montabone^{1,4}, M. J. Wolff⁴

¹Laboratoire de Météorologie Dynamique, ²Laboratoire Atmosphères, Milieux, Observations Spatiales, ³Istituto di Astrofisica e Planetologia Spaziali, ⁴Space Science Institute

Introduction		M and ICI	High r _{eff}	
0000				

Cloud properties retrievals from MEx OMEGA

We have used the Mars Express OMEGA imaging spectrometer to retrieve the mean effective radius, r_{eff} , and optical depth, τ_i , of water ice cloud aerosols.

We can examine the distribution and variability of r_{eff} and τ_i in cloud formations and statistically evaluate our results.

OMEGA is the Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, an imaging spectrometer with three channels:

```
visible (0.35–1.05 \mum), C (1–2.77 \mum), and L (2.65–5.1 \mum).
```


Introduction		M and ICI	High r _{eff} 000	

OMEGA data and our retrieval

The inversion method used here fits a computed spectrum at seven wavelengths which cover the 1.5 μ m, 2 μ m, and 3.1 μ m water absorption bands.

Reflectances are computed using the DISORT radiative transfer code (Stamnes *et al. Appl. Opt.* 27 (1988)) and minimization is done using a Levendberg-Marqhardt least squares routine.

To identify clouds, we use the Ice Cloud Index (ICI), the ratio of the reflectance at 3.4 μ m to that at 3.52 μ m, which reflects the slope of the 3.1 μ m water absorption band (Langevin *et al. JGR* 112 (2007)).

Typical values range from 0.7 for very thin clouds, to 0.35 for opaque clouds.

Introduction		M and ICI	High r _{eff}	
00000				

New prior data sets

We are now using:

- OMEGA pixels are selected using pre-computed ICI maps,
- vertical profiles of temperature and surface temperature come from V5.2 of the LMD Mars general circulation model (LMDGCM) (Forget *et al. J. Geophys. Res.* 104 (1999); Millour *et al. EPSC* (2015)),
- dust opacity is taken from a climatological database of dust optical depths (Montabone *et al. Icarus* 251 (2015)),
- surface albedo for each analyzed pixel at each wavelength is provided by a new analysis of OMEGA data using principal component analysis (Geminale *et al. Icarus* 253 (2015)).

The retrieval is most sensitive to the surface albedo.

www-mars.lmd.jussieu.fr

Introduction		M and ICI	High r _{eff}	
00000				

Multi-spectral surface albedo data set

Results	M and ICI	High r _{eff}	
•			

Distribution of retrievals for 209,936 'spectels' from 102 OMEGA observations

	Spatial distribution	M and ICI	High r _{eff}	
	00			

Spatial distribution of $r_{\rm eff}$ and $\tau_{\rm i}$: obs. 0937_5

	Spatial distribution	M and ICI	High r _{eff}	
	00			

Some retrievals return $r_{\rm eff} > 10 \ \mu { m m}$ – a look at the χ^2

	M and ICI ●○○	High r _{eff} 000	

The $r_{\rm eff}$ - $\tau_{\rm i}$ phase space

$$au_{
m i} = rac{3 M Q_{
m ext}}{4
ho r_{
m eff}}$$
 ,

M is water ice mass, Q_{ext} is the extinction efficiency, and a is the density of

and $\boldsymbol{\rho}$ is the density of water ice.

	M and ICI ○●○	High r _{eff} 000	

Modelling the results

$$au_{\mathrm{i}} = rac{3 M Q_{\mathrm{ext}}}{4
ho r_{\mathrm{eff}}}$$
,

Synthetic spectra were created for the entire $r_{\rm eff}-\tau_{\rm i}$ phase space and ICIs were computed to confirm the observed trend.

	M and ICI ○○●	High r _{eff} 000	

Ice cloud mass (from slopes) vs. ICI

	M and ICI	High r _{eff}	
		•oo	

Some retrievals return $r_{\rm eff} > 10 \ \mu m$ – are these reliable?

	M and ICI	High r _{eff}	
		000	

What is it about these observations? It's dust, everywhere.

	<i>M</i> and ICI 000	High r _{eff} 00●	

Spectroscopy at the extremes: some spectra defy our assumptions.

		M and ICI	High r _{eff}	Conclusion
La fin. merc	ci!			

Conclusions

 \textit{r}_{eff} and τ_i have been retrieved from 209,936 cloudy spectels in 102 OMEGA spectral images.

 $r_{\rm eff}$ can vary significantly within a cloud, but has an overall mean of 2.1 $\mu m.$

We are confident in our data set and it will be distributed on the ESA Planetary Science Archive as part of the UPWARDS project.

ICI can act as a proxy for column mass for optically thick clouds, allowing the study of the global, 14-year OMEGA data set (*see the presentation here by* Andre Szantai).

Acknowledgements

Funding was provided by UPWARDS and this work supported WP 4.1.

Anna Geminale and her team as IAPS/INAF are generating the albedo maps.

Luca Montabone generated the dust climatology. Joachim Audouard and Andre Szantai provided ICI maps and databases.

Temperature data came from the LMD GCM. Jean-Baptiste Madeleine developed the retrieval

algorithm which uses DISORT. The OMEGA team provided their data.