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Escape to space has removed Martian water;
measurements of the upper atmosphere may
reveal how



H Is escaping
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In 2007, the H Corona

dimmed by a factor of 2

Chaffin et al. (2014)
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Abstract Mars today is much drier than the Earth, though they likely began with similar relative amounts
of water. One potential cause for Ihls discrepancy is hydrogen loss to space, which may have removed a

large fraction of Mars’ 3 an ords change in the Martian
hydrogen escape rate in 2007, inconsistent with established models for the source of escaping hydrogen.
We analyze 121.6 nm (hydrogen Lyman-a) airghow made by on
the Mars Express spacecraft over 0f2007. The enhanced rates we observe may

be due to lower atmospheric heating and overturn during the 2007 (Mars Year 28) global dust storm,
suggesting that hydrogen escape from Mars during dust storms may dominate loss of the planet's water
inventory. Thi io has major for the total amount of water lost to space
over Martian history.

1. Introduction

The first observations of atomic hydrogen in the upper of Mars de by Mari : 3
and 9, which observed 121 6 nm (hydrogen Lyman-a) sunlight scattered by the outer fringes of the Martian
atmosphere, known as the hydrogen corona [Anderson, 1974). More recent investigations have been per-
formed with the ulraviolet spectrometer on the European Space Agency’s Mars Express mission, SPICAM

for of the I f the of Mars) (Bertaux et al,, 2000,
2006). hydi using SPICAM by Chaufray et al. [2008] focused on seven
observations; we extend their method to analyze 21 observations in time sequence, taken over the second
half of 2007. All of these previous limited in time longest time span
previously studied spanned 30 days beginning in March 2005. Qurs is thus the first study with the poten-
tial to determine the long-term average H escape rate from Mars and the first capable of detecting its time
variability on the scale of months.

These observations were selected for analysis to dets the escape rate of from the atmo-
sphere of Mars, which is thought to be controlled by near-surface and ionospheric zmmlmy and diffusion
through the Soon after Yy €0, Iy

that this ined stable of CO, into COand O, through
the cycle, which y of CO and O species into carbon dioxide via
photedissaciation products of water near the Martian surface [McElroy and Donahue, 1972; Parkinson and
Hunten, 1972]. As a by-product, this cycle produces molecular hydrogen, which has an atmospheric life-
time of hundreds of years [Hunten and McElroy, 1970). Because molecular hydrogenis light and volatile, it
can be mixed upward into the ionosphere, whereas water is trapped close to the surface by the cold trap
atthe tropopause [Clancy et al, 1996). Once it amrives in the ionosphere, most of this molecular hydrogen is
quickly destroyed through reaction with CO; [Krasnopolsky, 2002], producing atomic hydrogen which dif-
fuses toward the exobase. At the exobase, the fraction of the hydrogen atoms withvelocities greater than
Martian escape velocity can escape to space. In this model, because the escaping hydrogen is sourced from
long-lived molecular hydlo;n. its escape rate should not be a srong function d’smon orsolar cyde but

tibution in any medkim, provided in the sol and
the ugumupw»uux

the wels l!levmm!wrogen-

modifcations or adagketons aee made.
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Let’s expand our search
to the rest of the SPICAM dataset...
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..unfortunately, Southern summer is
poorly covered by SPICAM H observations



The complete reduced SPICAM H dataset

P

Y2y A v, b,
=Yy = =1 e\ ¥ ¥

=



Southern summer is poorly covered by
SPICAM H observations...
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..MAVEN is beginning to fill this gap



Southern summer is poorly covered by
SPICAM H observations...
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What else can the 2007 dust storm data

tell us?
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Intensities and altitude profiles of MUV
emission reveal thermospheric structure
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Previous analysis found no trend
with season
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During the major dust storm of 2007, the CO, and dust densities
in the atmosphere greatly remained unusually high for a long time.
This CO, density increase may be correlated with an increase of the
thermospheric temperature at a given altitude as the atmosphere
expands, as suggested by Stewart et al. (1972) and modeled by
Bougher et al. (2000). We found however no such correlation.

Stiepen+2015



Emissions are extracted using
multiple linear regression

Brightness
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Emissions are extracted using
multiple linear regression
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Profiles are fit with a Chapman model
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Profile peak
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trend with season
in binned data.

Difference with
prior work may
result from
different
treatment of solar
component.
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Resulting scale heights and altitudes
neak near solstice during dust storm

Scale heights
increase for both
emissions, but
uncertainty is
large.

Peak altitude
increases by
~15 km, roughly
one scale height.



Comparison with MAVEN data
suggests spatial variation may swamp
seasonal signal
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