

Discussion

Mars Express -Trace Gas Orbiter collaboration

Logistics

09:15-11:00 Meeting part1

11:00-11:30 Coffee

11:30-13:15 Meeting part2

13:30-14:30 Lunch at ESAC

13:30 Departure of Bus1 to Airport

14:30 Departure of Bus2 to Airport

Agenda

- D. Titov, H. Svedhem. Introduction (10 min)
- A. Cardesin, B. Geiger. Analysis of joint observation opportunities (20 min)
- 3. Discussion (5-10 min/ presentation)
 - Surface properties and geology
 - Lower atmosphere and meteorology
 - Upper atmosphere, aeronomy, plasma environment and escape
 - Instruments cross-calibration
 - Modelling and retrieval tools with multi-mission data
 - Comparison of radiative transfer codes
 - Collaboration with other missions (MAVEN, MSL, Isight, Exomars 2020, ...).

Goals of the discussion

- Outline science areas and topics for the most efficient collaboration
- New ideas for collaborative science
- Identify operational requirements and opportunities for joint MEX and TGO observations
- Outline synergies in data analysis
- Identify needs for cross-calibrations of the instruments, algorithms and codes

Joint MEX-TGO collaboration plan

ESA | 01/03/2018| Slide 4

Mars 2018-Apr-11 22:10:41 UTC 1,000x time Distance: 18,678.5 km Radii: [3,397 3,397 3,375] km **Analysis of observation opportunities** /A. Cardesin & B. Geiger/ Jupiter MEX SPICE - Cosmographia

SA | 26/04/2017 | Slide

European Space Agency

Surface properties and geology

- HRSC and CASSIS
- MARSIS, MaRS (BSR) and FREND
- Targets for joint observations

Lower atmosphere and meteorology

MEX-TGO climate synergies

A. Määttänen

Mars Express IDS

MEX Legacy

- Climatologies of:
 - Temperature
 - Dust
 - Water ice clouds
 - Water vapour
 - Ozone
 - Carbon monoxide
 - CO2 ice clouds
 -
- ADVANTAGE OF MEX: access to multiple local times (in contrast to MGS/TES, MRO/MCS...

Fig. 8. Map of retrieved abundance of water vapour as a function of Solar Longitude (Ls) and Latitude as observed by PFS/SWC, from orbit 634 to orbit 6337, obtained using spectra averaged in 5° Ls \times 5° Latitude bins.

MEX + TGO

- For climate studies long, continuous datasets are important:
 - Statistics
 - Interannual variability
- For climate studies good local time coverage is important:
 - Diurnal variations (examples: thermal tide, cloud formation, dust storm evolution)
- TGO will complement the MEX climatologies
 - continuing the datasets of MEX
 - overlapping observations (intercomparison/cross-calibration possible?)
 - with a different LT coverage (complement the LT coverage)
- if TGO mission extends beyond MEX lifetime, it will also prolong the climatologies

MEX + TGO + ground-based observations

- F. Forget pointed out at the last MEX SWT that MEX could be used in a novel way: full-disk viewing at apoapse
 - VMC is already doing this!
 - using the other instruments would allow for obtaining full-disk snapshots of climatological variables
 - sometimes better lighting conditions (when periapse in the night): increases the observation opportunities during the mission
 - confrontation with higher resolution observations (MEX+TGO)
 - confrontation with (possibly near-simultaneous) groud-based full-disk observations
 - would this be possible?

Upper atmosphere and escape

ESA | 01/03/2018| Slide 12

• Classical picture of water escape

- Classical picture of water escape
- Recent observations show things are more complicated:
 - Strong fast variability in H thermal escape, seasonal and/or dust storms
 - Supersaturated water vapour in the middle atmosphere
 - Water-derived ions

Heavens et al., 2018

- Classical picture of water escape
- Recent observations show things are more complicated:
 - Strong fast variability in H thermal escape, seasonal and/or dust storms
 - Supersaturated water vapour in the middle atmosphere
 - Water-derived ions
- Better characterization of links between lower atmosphere and H escape by combining:
 - MEx measurements of water and dust cycles (inc. profiles by SPICAM SO)
 - Regular TGO measurements of H2O (and HDO) profiles
 - MAVEN measurements of H escape and water ions

Radio Science on TGO vs MEX

- Not yet an official topic on TGO
 - Earth Radio occultation measurements can be achieved at a fairly low cost and with a high value
- MEX → TGO mutual radio occultations
 - Better spatial and local time coverage
 - Independence on radio-occultation seasons
 - Higher S/N ratio
 - No distortions in the Earth atmosphere/ ionosphere and interplanetary medium

Instruments cross-calibration

- CASSIS HRSC
- ACS & NOMAD SPICAM
- ACS (TRVIM) PFS

1+1

Comparison of radiative transfer codes and retrieval tools

ESA | 01/03/2018| Slide 19

Collaboration with other missions

ESA | 01/03/2018| Slide 20

Additional slides

ESA | 01/03/2018| Slide 21

European Space Agency

MEX – TGO collaboration

Nadir observation

Topics for the discussion

- climatological parameters (temperature, minor species, dust and ices)
- assimilation of MEX measurements in GCMs
- couplings between atmospheric layers: from the lower atmosphere to the exosphere
- > dependence of escape on the state of the lower atmosphere
- surface: photometric properties and temporal variations
- sub-surface ice and its correlation with surface geology and mineralogy
- evolution of the polar caps and polar atmosphere

ESA | 01/03/2018| Slide 26

Implementation

- Collaboration in data analysis
 - Early sharing and discussion of results
 - Cross comparison of retrieved climatological parameters
 - Joint use of TGO and MEX data in GCMs
- Collaboration at operations level
 - MEX support by providing data products
 - Analysis of joint observation opportunities
 - Joint Long-term activity plan (targets, campaigns)
 - Simultaneous and co-located observations
 - Filling gaps in the surface coverage

Measures to foster MEX-TGO collaboration

- Exchange of Co-Is between TGO and MEX
- > Selection of IDS and participating scientists on ExoMars
- "Gap analysis" in both topical and competence domains
- Implementation of operational synergies and collaboration at operational level
- Release of MEX high-level data products
- Conferences and data workshops

