

Radiative Transfer intercomparison in the NOMAD team

S. Robert, Y. Willame, A.C. Vandaele ; M. Lopez-Valverde, F. Gonzalez-Galindo, B. Funke, M. Lopez-Puertas ; F. Altieri, A. Geminale, F. Oliva ; G. Sindoni ; G. Villanueva and the NOMAD team

MEX / TGO collaboration ESAC (Madrid) Ist March 2018

In a nutshell

- Aim:
 - Comparing each group's radiative transfer code ;

YAL D'AERONOMIE SPATIALE DE BELGIOUE ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUU

- Highlighting/Understanding the differences ;
- NOT uniformizing the codes
- How?:
 - Simulating spectra in both spectral ranges: UV-VIS and IR
 - In the following: only IR presented
 - Comparison and discussion remotely and during 3h at each SWT
- 7 exercises from April 2011 to July 2017.

.be

RT codes in the IR

BELGISC	Name (Institute)	ARS (IAPS)	ASIMUT & ALVL (BIRA-IASB)	KOPRA (IAA)	LBLRTM & GENLN3 (GSFC) + https://psg.g sfc.nasa.gov/
	Based on	Ignatiev[1]	Vandaele[2] Spurr[3]	Karlsruhe[4]	Clough[5] Villanueva[6]
5	Spectral Range	UV - VIS - IR	UV – VIS – IR	IR	UV – VIS – IR mm/submm
	Geometry: layering	Plane parallel	Spherical Plane parallel	Spherical	Spherical Plane parallel
	Geometry: viewing	NADIR	Limb/NADIR/SO	Limb/NADIR/SO	Limb/NADIR/SO
	Scattering	yes	yes	Single	Single
	Non-LTE	no	no	GRANADA model [7]	yes [via tables]
(CO_2 line mixing	no	yes	yes	yes
	Outputs	Transmittance Radiance	Transmittance Radiance	Transmittance Radiance	Transmittance Radiance

 N.I. Ignatiev et al., PSS 53 (2005) 1035 ;
A.C. Vandaele, et al., Proc. of the First 'Atmospheric Science Conference', ESRIN (2006) Frascati, Italy ;
R. Spurr, et al., JQSRT 68 (2001) 689 ;
www-imk.fzk.de/asf/ame/publications/kopra_docu/
S.A. Clough, et al., JQSRT 91 (2005) 233 ;
G.L. Villanueva, et al., JGR 116 (2011) E08012 ;
B. Funke et al., JQSRT 113 (2012) 1771.

Exercise I

(ONINKLIJK BELGISCH INSTITUT VOOR RUIMTE-AERONOMIE INSTITUT ROYAL D'AERONOMIE SPATIALE DE BELGIOUE ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUT VOOR RUIMTE-AERONOMIE INSTITUT ROYAL D'AERONOMIE INSTITUT ROYAL D'AERONOMIE INSTITUT ROYAL D'AERONOMIE INSTITUT ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUT ROYAL D'AERONOMIE SPATIALE DE BELGIOUE ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUT ROYAL D'AERONOMIE SPATIALE DE BELGIOUE ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUT ROYAL D'AERONOMIE INSTITUT ROYAL BELGIAN INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUT ROYAL D'AERONOMIE INSTITUTE OF SPACE AERONOMY KONINKLIJK BELGISCH INSTITUTE OF SPACE AERONOMIE INSTITUTE OF SPACE

• NADIR

- Solar zenith angle of 50°
- 2.2-4.3 μm (2300-4500 cm⁻¹)
- Gaussian function with a FWHM of 0.15 cm⁻¹
- Constant albedo = 0.23
- Radiance: blackbody temperature of 5796 K and the data from the ACE mission (Hase et al, 2010)
- CO₂, H₂O and CH₄

- Spectral range and output resolution: 2900-3100 cm⁻¹, step 0.0002 cm⁻¹ (non convolved)
- 1 single line of CH_4 (R1) (from HITRAN2008)
- 1 homogeneous layer of 10 km length, plane parallel, ٠ air mass=1.
- 7 test cases with various conditions: •
 - CH₄ abundance: 100 ppb, 100 ppm at T=200K, P=10 mbar
 - Temperature [K]: 150, 200, 250 at CH₄=100 ppb, P=10 mbar
 - Pressure [mbar]: 1, 10, 100, 1000 at CH₄=100 ppb, T=200K
- Definition of the pressure shift
- Partition functions •
- Physical constants
- Isotopic abundance values
- Voigt profiles: Humlicek, Kuntz, LBLRTM & Pade

3038.5

3038.52 3038.54 3038.56

10 different cases were suggested:

- Spectral range and output resolution: 2900-3100 cm⁻¹, step 0.0002 cm⁻¹ (non convolved)
- 1 single line of CH_4 (R1) 100 ppb
- Isothermal (296K) fully layered atmosphere: 65 layers ; 2 surface pressures (10 and 100 mbar)
- Different airmasses described using sza values of 30°, 45° and 70°.

.be

- Curtis-Godson approximation
- Atmospheric greenhouse effect:
 - diffusivity factor (beta= 1.66);
 - integration over 6 angles between π /2 (horizon) and π (nadir), equally spaced in cos(θ);
 - integration over 21 angles between π/2 (horizon) and π (nadir), equally spaced in cos(θ).

- 1 line of CO₂ (3737.00 cm⁻¹)
- Density multiplied by a factor 1 and a factor 0.001
- isothermal atmosphere
- Voigt + Kuntz lineshape

Discussion concerning:

- the line shapes (Kuntz (1997) implementation with or without (all) the Ruyten (2004) corrections
- the far wing treatment (Chi factor, as given in Cousin et al. (Appl. Opt. 24 (1985) 3899-3907) and Menoux et al. (Appl. Opt. 30 (1991) 281-286))

ifsi **KOPRA** LIDORT ARS ASIMUT 5 Compared to ARS 7 -----3737.4

- 1 line of CO₂ (3737.00 cm⁻¹)
- non-isothermal atmosphere
- factor 1 and factor 0.001 on the density
- Voigt + Kuntz lineshape

Discussion concerning:

- the line shapes (Kuntz (1997) implementation with or without (all) the Ruyten (2004) corrections
- the far wing treatment (Chi factor, as given in Cousin et al. (Appl. Opt. 24 (1985) 3899-3907) and Menoux et al. (Appl. Opt. 30 (1991) 281-286)) ٠

Solar occultation

- CO₂: 3754 3782 cm⁻¹ (atm file)
- CH₄: 3010 3037 cm⁻¹ (60 ppb) ٠
- Gaussian ILS •
- Voigt + Kuntz line shape •
- Spectral resolution: 0.15 cm⁻¹ ٠
- Final spectral step: 0.1 cm⁻¹ ٠
- Line cutoff total range = 25 cm⁻¹ ٠
- One simulation at 20 km altitude.

Discussion concerning:

- the layering scheme (sub-layering during the raytracing) the path calculation
- ٠
- the far wing treatment ٠

Conclusion

A series of 7 exercises of simulation was performed.

Very useful as it led to

- improve the different codes by harmonizing the use of several parameters (physical constants, partition function, ...)
- highlight the significant effects of some parameters like pressure-shift and its temperature dependency
- interesting discussions concerning the implementation of the atmospheric emission, the Curtis-Godson approximation, the Voigt profile, the wing cut-off treatment, ...

This activity was stopped because

- The aim of the intercomparison was achieved (i.e. understanding the differences)
- Lack of time (preparation of data pipeline, scientific planning) and lack of man power

