Radiative GRMHD simulations of super-Eddington accretion onto neutron stars

David Abarca¹ Włodek Kluźniak¹ Aleksander Sądowski

¹Nicolaus Copernicus Astronomical Center, Warsaw, Poland

PULX Workshop | Madrid, Spain

Research motivation: Neutron Star Ultraluminous X-ray Sources

- Objects observed outside the central region of galaxies with X-ray luminosity exceeding 10³⁹ erg s⁻¹ observed alongside pulsations with period ~ 1s
- Must be accretion onto neutron stars (NS)!
- = 10^{39} erg s⁻¹ is about 10 L_{Edd} for 1.4 M_{\odot} neutron star (NS)
- NSs differ from black holes (BH) by a hard surface and stellar magnetic fields

image credit: C. Carreau

General Relativistic Radiation MagnetoHydroDynamics

- conservation of mass (1)
- conservation of energy-momentum (2)
- conservation of radiation energy-momentum (3)
 - Maxwell (induction for ideal MHD) (4)

 $\begin{aligned} \nabla_{\mu}(\rho u^{\mu}) &= 0 \\ \nabla_{\mu}T^{\mu\nu} &= G^{\nu} \\ \nabla_{\mu}R^{\mu\nu} &= -G^{\nu} \\ \nabla_{\mu}F^{*\mu\nu} &= 0 \end{aligned}$

Or basically,

$$\frac{\partial}{\partial t}$$
 [quantity] = -div [flux of quantity] + source of quantity

Conserved quantities: mass, momentum, energy are evolved with time

Details of the Koral code (Sądowski et al. 2013, 2015)

Radiation is evolved using the M₁ closure scheme

- \Box There exists a frame, u^{μ}_{R} , where radiation is isotropic, $\widehat{P}_{ij}=\frac{1}{3}\widehat{E}\delta_{ij}$
- Radiation source computed in this frame and boosted back to lab frame
- Valid for optically thin and optically thick environments
- M_1 means radiation is treated like a fluid and evolved in parallel with the gas but with opposite signs for the radiative source terms , G^{ν}
- Total energy and momentum are conserved even with radiation, $\nabla_{\mu}(T^{\mu\nu}+R^{\mu\nu})=0$
- 2D axisymmetry (2.5D) sustained by mean-field dynamo
- Radiation source terms, G^v, require implicit-explicit time integration
- KORAL uses ideal MHD approximation, electric fields are zero in the fluid frame, and so can be ignored

Simulation Set Up

- Initial Condition: Weakly magnetized equilibrium torus in local thermal equilibrium with radiation
- BH inner boundary, outflow underneath event horizon
- NS inner boundary at 5 rg, reflect radial velocity, set tangential velocity to zero
- Evolve for 80,000 GM/c³, about 100 orbits at the innermost stable circular orbit,

Radiation and gas density in the r - z plane

Velocity map – time average 40,000 \sim 80,000GM/c³

Black Hole

Neutron Star

Results: Optical depth and Specific Energy

Black Hole

Neutron Star

8 of 16

Accretion Rates

Observed luminosity as a function of viewing angle

Conclusions

- Not bright enough for the neutron star to be a ULX!
- Large outflow rate traps radiation
- We need to add stellar magnetic fields

Simulations around magnetized stars

•
$$T^{\mu}{}_{\nu} = (\rho + u_{int} + p + b^2)u^{\mu}u_{\nu} + \left(p + \frac{1}{2}b^2\right)\delta^{\mu}_{\nu} - b^{\mu}b_{\nu}.$$

- ρ density, u_{int} internal energy, $p = (\Gamma 1)u_{int}$ pressure, u^{μ} four-velocity, b^{μ} magnetic field four-vector
- \blacksquare Dipole field means $b^2 \propto r^{-6}$
- $(\rho, u_{\text{int}}, p, b^{\mu}, u^{\mu}) \rightarrow T^{\mu}{}_{\nu}$ is easy
- $\blacksquare T^{\mu}{}_{\nu} \to (\rho, u_{\text{int}}, p, b^{\mu}, u^{\mu})$ is hard, especially when b^2 is large
- Force-free approximation is used to describe NS magnetosphere (Parfrey & Tchekhovskoy 2017)
- Takahashi & Ohsuga (2017) simulated accretion onto $B = 10^{10}$ G NS without force-free approximation

First results accretion onto magnetized NS (10¹⁰G)

 \log_{10} gas density in g/cm $^3 \rightarrow$

- Quite a few numerical tricks including force-free related adjustments (ignoring plasma momentum)
- Short duration, can not see MRI yet in disk
- Using an absorbing boundary condition

First results accretion onto magnetized NS (10¹⁰G)

 \log_{10} radiation energy in erg/cm³ \rightarrow

- Radiation in the column is advected into the star with the gas flow
- Radiation diffuses out of the sides of the column and up the axis
- Tilted magnetic axis would lead to pulsations as seen in ULXs

Observed luminosity as a function of viewing angle

Conclusions

- Not bright enough for the neutron star to be a ULX!
- Large outflow rate traps radiation
- We need to add stellar magnetic fields
- 10^{10} G magnetic field enough to reach 10^{39} erg s⁻¹
- Next step is try combine reflection and magnetic fields
- Proper force-free to push to higher magnetic fields, still need to explain 10⁴⁰, 10⁴¹ erg s⁻¹ observations