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Research motivation: Neutron Star Ultraluminous X-ray Sources

® Objects observed outside the
central region of galaxies with
X-ray luminosity exceeding 10%°
erg s—! observed alongside
pulsations with period ~ 1s

= Must be accretion onto neutron
stars (NS)!

= 10% erg s—! is about 10 Lgyq for
1.4 Mg neutron star (NS)

u NSS diﬂ:er from blaCk hOleS (BH) image redit: C. Carreau
by a hard surface and stellar
magnetic fields
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General Relativistic Radiation MagnetoHydroDynamics

Vulput) =0 conservation of mass (1)
VT =GV conservation of energy-momentum  (2)
V.R"Y =—-GY  conservation of radiation energy-momentum  (3)
VuF* =0 Maxwell (induction for ideal MHD)  (4)

Or basically,

% [quantity] = —div [flux of quantity] + source of quantity
Conserved quantities: mass, momentum, energy are evolved with time
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Details of the Koral code (Sadowski et al. 2013, 2015)

= Radiation is evolved using the M; closure scheme
© There exists a frame, u¥, where radiation is isotropic, Pi; = %Eéij
0 Radiation source computed in this frame and boosted back to lab frame
0 Valid for optically thin and optically thick environments
M; means radiation is treated like a fluid and evolved in parallel with
the gas but with opposite signs for the radiative source terms , GV
Total energy and momentum are conserved even with radiation,
V(T +RHY) =0
2D axisymmetry (2.5D) sustained by mean-field dynamo
Radiation source terms, GY, require implicit-explicit time integration

= KORAL uses ideal MHD approximation, electric fields are zero in the
fluid frame, and so can be ignored
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Simulation Set Up

= |nitial Condition: Weakly
magnetized equilibrium torus in
local thermal equilibrium with
radiation

= BH inner boundary, outflow
underneath event horizon

= NS inner boundary at 5 rq, reflect
radial velocity, set tangential
velocity to zero

= Evolve for 80,000 GM/c3, about
100 orbits at the innermost

Z (GM/c2)

. . 200 300
stable circular orbit, r (6GM/c2)
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Radiation and gas density in the r — z plane

Black Hole 17 Neutron Star
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Velocity map - time average 40,000 ~ 80,000GM /c?
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Results: Optical depth and Specific Energy
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Accretion Rates
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Observed luminosity as a function of viewing angle
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Conclusions

= Not bright enough for the neutron star to be a ULX!
= Large outflow rate traps radiation
= We need to add stellar magnetic fields
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Simulations around magnetized stars

1
= Ty = (p + Uine + p + b )ubtuy + (p + §b2> 8% —bHby.

p - density, u;, - internal energy, p = (I' — 1)u;« - pressure,
ut - four-velocity, b"* - magnetic field four-vector

Dipole field means b? « r—°
(P, Wint, p, b*, ul) — TH, is easy
= T, — (p, Wint, P, b*, uM) is hard, especially when b? is large

= Force-free approximation is used to describe NS magnetosphere
(Parfrey & Tchekhovskoy 2017)

= Takahashi & Ohsuga (2017) simulated accretion onto B = 10° G NS
without force-free approximation
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First results accretion onto magnetized NS (101°G)

40

log;, gas density in g/cm3 — =

® Quite a few numerical
tricks including force-free
related adjustments
(ignoring plasma
momentum)

= Short duration, can not
see MRI yet in disk

-6.000

= Using an absorbing
s Max: -1.745
boundary condition 10 20 30 40 50 60 Min:-9.295
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First results accretion onto magnetized NS (101°G)

log;o radiation energy in 1750

erg/cm3 — 20
= Radiation in the column is
advected into the star
with the gas flow

= Radiation diffuses out of
the sides of the column
and up the axis

= Tilted magnetic axis -0

would lead to pulsations
. 10 20 30 40
as seen in ULXs 1/rg
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Observed luminosity as a function of viewing angle
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Conclusions

Not bright enough for the neutron star to be a ULX!
Large outflow rate traps radiation

We need to add stellar magnetic fields

101° G magnetic field enough to reach 10%° erg s~
Next step is try combine reflection and magnetic fields

Proper force-free to push to higher magnetic fields, still need to
explain 10%°, 104! erg s—! observations
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