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Sub-Eddington or Super-Eddington
IMBH + sub-Eddington disk 
If the IMBHs exist, sub-
Eddington disk can explain the 
huge luminosity of ULXs;
0.1LEdd(103Msun)~1040erg/s.

Makishima et al. 00, Miller et al. 04, 
Farrell et al. 09, Servillat et al. 11, etc.

Super-Eddington Disk 
Even if the BH mass is around 
10Msun, super-Eddington disks 
can reproduce the huge 
luminosity; 10LEdd(10Msun) 
~1040erg/s.

King 04, 08; Ohsuga+ 05, 09, 11, 
Poutanen+07; Gladstone+09; Middleton 
+11, Sadowski+13,15, Takahashi+16



Super-Edd. accretion onto NSs
NS + Super-Eddington flow 
If the central objects of ULXs are NSs, 
super-Eddington is necessary because the 
mass of NSs is a few Msun.

NS

d 5 169u409 47.90) to be consistent with the location of M82 X-2 (Fig. 3).
Monitoring by the Swift satellite establishes that the decrease in the
nuclear region flux seen during observation (ObsID) 011 (see Extended
Data Table 1) is due to fading of M82 X-1. The persistence of pulsations
during this time further secures the association of the pulsating source,
NuSTAR J09555116940.8, with M82 X-2. We derive a flux Fx(0.5–
10 keV) 5 4.07 3 10212 erg cm22 s21, and an unabsorbed luminosity
of LX(0.5–10 keV) 5 (6.6 6 0.1) 3 1039 erg s21 for M82 X-2 during the
Chandra observation.

The detection of coherent pulsations, a binary orbit, and spin-up behav-
iour indicative of an accretion torque unambiguously identify NuSTAR
J09555116940.8 as a magnetized neutron star accreting from a stellar
companion. The highly circular orbit suggests the action of strong tidal
torques, which, combined with the high luminosity, point to accretion
via Roche lobe overflow. The orbital parameters give a Newtonian mass
function f5 2.1M[ (here M[ indicates the solar mass), and the lack of
eclipses and assumption of a Roche-lobe-filling companion constrain the
inclination to be i, 60u. The corresponding minimum companion mass
assuming a 1.4M[ neutron star is Mc . 5.2M[, with radius Rc . 7R[.

It is challenging to explain the high luminosity using standard models
for accreting magnetic neutron stars. Adding the Chandra-measured
E , 10 keV luminosity to the E . 10 keV pulsed flux (NuSTAR cannot
directly spatially resolve the ULX), NuSTAR J09555116940.8 has a lumi-
nosity LX(0.5–30 keV) < 1040 erg s21. Theoretically, the X-ray luminosity
depends strongly on the magnetic field and the geometry of the accre-
tion channel, being largest for a thin, hollow funnel that can result from
the coupling of a disk onto the magnetic field10. A limiting luminosity

LX<
lo

2pdo
LEdd, where lo is the arc length of the funnel, do its thickness,

and LEdd the Eddington luminosity, can be reached if the magnetic field
is high enough (B $ 1013 G) to contain the accreting gas column8. Ratios
of lo/do < 40 are plausible, so that the limiting luminosity can reach
LX < 1039 erg s21, implying mass transfer rates exceeding the Eddington
value by many times. Beyond this, additional factors increasing LX could
result from increased LEdd due to very high (B . 1014 G) fields, which
can reduce the electron scattering opacity17, and/or a heavy neutron star.
Some geometric beaming is also likely to be present.

This scenario is, however, difficult to reconcile with the measured rate
of spin-up. The spin-up results from the torque applied by accreting
material threading onto the magnetic field18,19. NuSTAR J09555116940.8
is likely to be in spin equilibrium, given the short spin-up timescale,
P= _P<300yr. Near equilibrium, the magnetosphere radius, rm, is com-
parable to the co-rotation radius (the radius where a Keplerian orbit
co-rotates with the neutron star):

rco~
GMNSP2

4p2

! "1=3

~2:1|108 MNS

1:4M8

! "

Here G is the gravitational constant, MNS is the neutron star mass, and
rco is in cm. With this assumption we can convert the measured torque,
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Figure 1 | The X-ray light curve and pulsations from the region containing
NuSTAR J09555116940.8. a, The background-subtracted 3–30 keV light
curve extracted from a 700-radius region around the position of NuSTAR
J09555116940.8. Black and red indicate the count rate from each of the two
NuSTAR focal plane modules (FPMA and FPMB; 1s errors). The vertical grey
labels indicate different observations. b, Detection of the pulse period. Data
(black points) are fitted using the best sinusoidal ephemeris (blue dashed line).
The mean period is 1.37252266(12) seconds, with an orbital modulation period
of 2.51784(6) days. The dashed vertical lines through all panels delineate the
contemporaneous Chandra observation. c, Pulsed flux as a fraction of the
emission from the 700 region. Insets, pulse profile at indicated points,
normalized so that s 5 1.
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Figure 2 | The spin-up behaviour of NuSTAR J09555116940.8. a, The
residual period after correcting for the sinusoidal orbital modulation given in
Extended Data Table 2. The period, displayed through the best-fit in Extended
Data Table 3, decreases consistently, but the spin-up rate is changing. b, Time
of arrival (TOA) residuals after removing the best-fit sinusoidal orbital
modulation and a constant period derivative (the parameters are shown in
commonly used units26). PEPOCH, F0 and F1 are the reference time and the
pulse frequency and its derivative, respectively. There is a clear trend
independent of the choice of time binning (30, 40 or 50 ks) that results from the
variable spin-up. c, Residuals after a smooth curve is fitted to the TOA residuals.
Residual noise remains in the TOAs at the 100 ms level (1s uncertainties).
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Bachetti et al.14

Basko & Sunyaev 76; Ohsuga 07; Mushtukov+15, 18; 
King & Lasota 16; Kawashima et al. 16; Takahashi & 
Ohsuga 17, 18; Chashkina+17

ULX pulsar; 
Engine is super-
Eddington accretion 
onto NS. 

Disk accretion Accretion column

also Fuerst+16, Israel+17, 
Carpano+18, etc. 

Today’s plan
• We introduce our Radiation-HD/MHD simulations 
of super-Eddington flows around BHs and explain the 
basic features of the super-Edd. flows.   

• We show that the super-Edd. flows can explain 
observations of ULXs (Luminosity, spectra, clumpy 
outflow, ULX bubbles).  

• We show the simulation results of the super-Edd. 
flows around NSs (Powerful outflows and accretion 
column appear).  



BH

Super-Eddington 
disk

Magnetic
field line

Takahashi, Ohsuga et al. 2016

Radiation-MHD Simulations

see also Ohsuga+ 05, 09, 11;  
Sadowski+ 14, 16, Jiang+ 2014 

~30Rs

Super-Eddington disk & outflows

Radiation

Accretion
Flow

Outflow

Mass density

Radiation-pressure 
supported disk  

&  
radiatively-driven jet 

(~0.3-0.5c)

Ohsuga et al. 2009 
Ohsuga & Mineshige 2011 
see also Ohsuga et al. 2005

~50Rs



Luminosity
The radiative flux is mildly collimated 
since the disk is optically and 
geometrically thick.  

Thus, observed luminosity is much 
larger than the Eddington luminosity 
except for the edge-on view (e.g.,
22LEdd for ≲20° in the case of 
Mdot~100LEdd/c2, Ldisk~3LEdd).
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(a) Log(ρ) [g cm-3] (c) Log(plasma-β)(b) Log(T
gas

) [K]

(d) Log(B
ϕ

2/8π) [erg cm-3] (f) Log(|B
ϕ
|/B

p
) (e) Log(B

p
2/8π) [erg cm-3]

(g) Log(E
0
) [erg cm-3] (i) Log(T

gas
/T

rad
) (h) Log[E

0
/(e+B2/8π)]

Fig. 5.— Two-dimensional distribution of the various quantities for Model A: (a) the density overlaid with the velocity vectors, (b)
the gas temperature, (c) the plasma-β, (d) the magnetic energies via the toroidal component of field, (e) the same but of the poloidal
component, (f) the magnetic pitch, (g) the radiation energy, (h) the ratio of the radiation energy to the sum of the gas and magnetic
energies, (i) and the ratio of the gas temperature to the radiation temperature. All values are time-averaged over t = 6−7 s. The white
and black arrows in panel (a) indicate the velocity vectors whose magnitude exceed the escape velocity. The dashed line in panel (b) is the
photosphere, at which the optical thickness measured from the upper boundary is unity. The arrow in panel (g) shows the radiative flux
vector.
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(a) Log(ρ) [g cm
-3
] (c) Log(plasma-β)(b) Log(Tgas) [K]

(d) Log(Bϕ
2
/8π) [erg cm

-3
] (f) Log(|Bϕ|/Bp) (e) Log(Bp

2
/8π) [erg cm

-3
]

(g) Log(E0) [erg cm
-3
] (i) Log(Tgas/Trad) (h) Log[E0/(e+B

2
/8π)]

Fig. 5.— Two-dimensional distribution of the various quantities for Model A: (a) the density overlaid with the velocity vectors, (b)
the gas temperature, (c) the plasma-β, (d) the magnetic energies via the toroidal component of field, (e) the same but of the poloidal
component, (f) the magnetic pitch, (g) the radiation energy, (h) the ratio of the radiation energy to the sum of the gas and magnetic
energies, (i) and the ratio of the gas temperature to the radiation temperature. All values are time-averaged over t = 6−7 s. The white
and black arrows in panel (a) indicate the velocity vectors whose magnitude exceed the escape velocity. The dashed line in panel (b) is the
photosphere, at which the optical thickness measured from the upper boundary is unity. The arrow in panel (g) shows the radiative flux
vector.
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Fig.5.—Two-dimensionaldistributionofthevariousquantitiesforModelA:(a)thedensityoverlaidwiththevelocityvectors,(b)
thegastemperature,(c)theplasma-β,(d)themagneticenergiesviathetoroidalcomponentoffield,(e)thesamebutofthepoloidal
component,(f)themagneticpitch,(g)theradiationenergy,(h)theratiooftheradiationenergytothesumofthegasandmagnetic
energies,(i)andtheratioofthegastemperaturetotheradiationtemperature.Allvaluesaretime-averagedovert=6−7s.Thewhite
andblackarrowsinpanel(a)indicatethevelocityvectorswhosemagnitudeexceedtheescapevelocity.Thedashedlineinpanel(b)isthe
photosphere,atwhichtheopticalthicknessmeasuredfromtheupperboundaryisunity.Thearrowinpanel(g)showstheradiativeflux
vector.

8OHSUGA&MINESHIGE

         -1                  0                   1    

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

6          7          8           9         10        11

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

-0.5         0            0.5            1           1.5

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

6          8          10        12        14        16

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

12      13      14       15      16       17

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

0               1                2                3    

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

-1       0        1        2         3        4        5

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

-7       -6       -5       -4       -3       -2

10         20         30         40         50

70

0

10

20

30

40

50

60

80

r/RS

z/R
S

6          8          10        12        14        16

(a) Log(ρ) [g cm
-3
](c) Log(plasma-β) (b) Log(Tgas) [K]

(d) Log(Bϕ
2
/8π) [erg cm

-3
](f) Log(|Bϕ|/Bp) (e) Log(Bp

2
/8π) [erg cm

-3
]

(g) Log(E0) [erg cm
-3
](i) Log(Tgas/Trad) (h) Log[E0/(e+B

2
/8π)]

Fig.5.—Two-dimensionaldistributionofthevariousquantitiesforModelA:(a)thedensityoverlaidwiththevelocityvectors,(b)
thegastemperature,(c)theplasma-β,(d)themagneticenergiesviathetoroidalcomponentoffield,(e)thesamebutofthepoloidal
component,(f)themagneticpitch,(g)theradiationenergy,(h)theratiooftheradiationenergytothesumofthegasandmagnetic
energies,(i)andtheratioofthegastemperaturetotheradiationtemperature.Allvaluesaretime-averagedovert=6−7s.Thewhite
andblackarrowsinpanel(a)indicatethevelocityvectorswhosemagnitudeexceedtheescapevelocity.Thedashedlineinpanel(b)isthe
photosphere,atwhichtheopticalthicknessmeasuredfromtheupperboundaryisunity.Thearrowinpanel(g)showstheradiativeflux
vector.

Radiative 
Flux

Super-Eddington flows can 
explain the large X-ray 
luminosity of ULXs.Ohsuga, Mineshige 2011

Monte Carlo Radiation transfer
(fee-free, thermal & bulk compton)

photon

Kawashima, Ohsuga et al. 2012

The Astrophysical Journal, 752:18 (12pp), 2012 June 10 Kawashima et al.

When the mass accretion rate is higher, our calculations in
this paper show that SEDs become softer, although our previous
paper (Kawashima et al. 2009) expected that SEDs become
harder because of Compton upscattering by thermal electrons
in the jet. Kawashima et al. (2009) evaluated the photon indices
by calculating the Compton y-parameters in the region τeff ! 1.
The effective optical depth is calculated by integrating the
free–free absorption and the scattering coefficients from the
outer boundary at r = 500rs to the inner boundary at r = 3rs
along the rays with polar angle θ = constant, for various θ .
(Here, we note that the computational domain for radiation
hydrodynamic simulation in Kawashima et al. 2009 was smaller
than that in this work.) Since Kawashima et al. (2009) did
not take into account the downscattering by cool outflows,
they overestimated the spectral hardening when the accretion
rate is high. When the mass accretion rate is higher, a greater
number of escaping photons tends to enter into the cool outflow
surrounding the jet and they are subsequently downscattered,
because the funnel becomes narrower and jet becomes thicker
for Thomson scatterings. This is the reason why the SEDs
become softer when the mass accretion rate is higher, in
this work. Nevertheless, the conclusion in Kawashima et al.
(2009) that the spectral state changes from the slim disk one
to the Comptonizing outflows is valid in highly supercritical
accretion flows because the SED of the photons escaping from
such highly supercritical flows is determined by the Compton
downscatterings in the outflow.

4.3. Comparison with Observations of ULXs

Recent X-ray observatories (Suzaku, XMM-Newton, and
Chandra) provide us with precise spectra of ULXs below
10 keV. In Figure 7, we compare the SEDs obtained in this work
and the XMM-Newton pn data of three ULXs: NGC 1313 X-2,
IC 342 X-1, and NGC 5204 X-1, which are kindly provided by
J. C. Gladstone. The SEDs of our results are normalized by the
X-ray luminosity shown in Figure 3, while the SEDs of ULXs
are normalized by the X-ray luminosity shown in Gladstone
et al. (2009). The SEDs obtained by our numerical simulations
are similar to those of ULXs. The observed X-ray spectra of
ULXs with photon index Γ " 2 can be fitted well by the models
with i " 30◦. On the other hand, for ULXs with photon index Γ
# 2, spectra with 20◦ " i " 50◦ are fitted well.

For IC 342 X-1 and NGC 5204 X-1, the soft X-ray component
below 1 keV of our results is weaker than that of the ULXs.
This is because the contribution from the cool outflow in the
region R # 100rs is underestimated because the temperature
of the outflow might be too cool to significantly contribute
to the SED at "1 keV or our computation box might be too
small. We might be able to resolve this discrepancy by carrying
out MHD simulations taking into account the dissipation of
magnetic energy in the disk corona and in the outflow, which
can heat the outflow. In addition, the magnetic fields affect the
geometrical structure of jets. Takeuchi et al. (2010) performed
axisymmetric two-dimensional radiation MHD simulations and
found that the jet is collimated by magnetic stress, while it
is accelerated by radiative force. Therefore, the structure of
the jet and the outflow is affected by magnetohydrodynamical
processes. It will be our future work to calculate photon spectra
by using the results of radiation MHD simulations.

Let us compare the luminosity obtained from our simulations
and ULXs. It should be noted that our simulation assumed
a black hole with M = 10 M⊙. The luminosity increases
or decreases according to the black hole mass. The X-ray

0113.0

1

0.1

1

0.1

1

0.1

NGC1313 X-2

IC342 X-1

NGC5204 X-1

Figure 7. Comparison of SEDs obtained from our radiation hydrodynamic
simulations with those of ULXs. Top panel: the SED for the simulation model
with Ṁ ≈ 1000LE/c2 and viewing angle i = 10◦–20◦ and the SED of NGC 1313
X-2. Middle panel: Ṁ ≈ 200LE/c2 (i = 0◦–10◦) and IC 342 X-1. Bottom panel:
Ṁ ≈ 200LE/c2 (i = 40◦–50◦) and NGC 5204 X-1. Red or blue solid curves
display the SEDs calculated in this work. Black points with error bars show
the XMM-Newton EPIC pn data corrected for absorption, which are shown
in Gladstone et al. (2009) and are provided by J. C. Gladstone. Each SED is
normalized by its isotropic X-ray luminosity.
(A color version of this figure is available in the online journal.)

luminosity for the models with Ṁ ≈ 1000LE/c2 and i =
10◦–20◦ is ∼1040 erg s−1 (Figure 7), while that of NGC 1313
X-2 evaluated in Gladstone et al. (2009) is ∼5 × 1039 erg s−1.
Since the X-ray spectrum of NGC 1313 X-2 is well fitted by our
simulation results with these parameters for the accretion rate
and the viewing angle, the luminosity difference suggests that
NGC 1313 X-2 may harbor a black hole whose mass is 5 M⊙,
since the luminosity of accretion flows is proportional to the
mass of black holes when Ṁ/(LE/c2) is constant. On the other
hand, the X-ray luminosity for the models with Ṁ ≈ 200LE/c2

and i = 40◦–50◦ is ∼3 × 1039 erg s−1, while that of NGC 5204
X-1, whose spectrum in the 1–10 keV band is well fitted by
this accretion rate and viewing angle in our simulations, is
∼5×1039 erg s−1. This indicates that NGC 5204 X-1 possesses a
slightly massive black hole with mass M ∼ 20 M⊙. We leave it as
a future work to carry out radiation hydrodynamical (or radiation
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Kawashima et al. 2012
(data; Gladstone 2009)

Simulated spectra nicely 
fit the observations.

X-RAY SPECTRA



Kitaki, Mineshige, Kawashima, Ohsuga+ 2017

We find roll over 
at around several keV.

Our results are consistent with the recent observations.

Resulting !~2.9 is consistent 
with the observations of 

!~3.1 (Walton+15).

face-on spectra

*Tin is too high. But it would 
decrease when we employ larger 

computational box. 

2 10 20[keV]

fitting parameters

X-RAY SPECTRA

CLUMPY OUTFLOWS
Some ULXs exhibit the time 
variations of X-ray luminosity, 

implying the launching of clumpy 
outflows (Middleton+2011). 

2D simulations reveals that the 
outflows fragments into many 

clouds via RT instability.

Super-Edd. disk

clumpy outflow

Takeuchi+ 2013



Black Hole

Outflow

3D simulations of clumpy outflows

~1000Rs

Torn sheet like structure. 
The size is ~100Rs.  

Outflow velocity is ~0.1c. 
Rotation velocity is 30% of  Vkep. 

Kobayashi+ 2018

Comparison with Observations
Sheet like structure 
Size (azimuthal direction) ~ 100Rs 
Outflow velocity ~ 0.1-0.2c
Rotation velocity ~ 30% of Vkep

(1)Time variation 
Timescale of the luminosity variation 
(100Rs/0.3Vkep) is

consistent with the observations 
(Middleton+11) in the case of 
MBH~10-100Msun.

(2)Absorption lines 
Outflow velocity of ~0.1-0.2c 
agrees with the observations 
of blueshifted absorption lines.

Pinto+16, 
see also Kosec+18



BH

At the direction of 45°, 
we find vr>vesc near the 
black hole. 

In "~45°-80°, outflow 
velocity gradually 
increases and exceeds 
vesc at r ~1000-4000Rs.

Such a wide angle 
outflow is accelerated by 
radiation force.

ULX BUBBLE

wide-angle

vr>vesc

vr<vesc

Hashizume et al. 2015

R/Rs

z/R
s

Hashizume+ 2015

ULX BUBBLE
Simulated kinetic power is 
comparable to the X-ray luminosity
(Lkin~LX~1039-40erg/s).
Such feature agrees with the 
observed ULX bubbles. 

also Pakull & Mirioni (2003),  
Grise et al. (2006), Pakull et al. (2010), 
Soria et al. (2010) Cseh et al. (2015) 
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Simulations of ULX Bubbles (Asahina+ in prep.)
Super-Eddington 

BH or NS



NS

super-Eddington disk

Outflow

Super-Eddington Flows around NSs

Takahashi+ 2018

Non-magnetized NS
ρ ρErad Erad

NS BH

High-density region around 
the NS surface.

Powerful 
outflow

see also Ohsuga 2007



Magnetized NS
計算ボックス

Takahashi, Ohsuga 2017

NS
~1010G

Flow structure

Disk region
turbulent motion

Outflow region
laminar structure

Accretion column
dipole 

NS



Spin-up rate
Magnetospheric radius (RM) is 
determined by Pmag ~ Prad, 
since radiation pressure-dominated 
disk is truncated. 

Gas loses angular momentum at 
around RM, leading to the spin-up 
of NS. Estimated spin-up rate is 
about -3x10-11s s-1. It roughly 
agrees with the observations of 
ULXPs.

SUMMARY
• Super-Eddington flows can explain the basic 
features of the ULXs (X-ray luminosity, spectra, 
clumpy outflow, ULX bubbles).  

• Super-Eddington accretion onto NS is more 
powerful engine, since the energy as well as the 
matter is not swallowed.  

• ULXPs would be powered by the super-
Eddington flows onto magnetized NS (super-
Eddington accretion column).


