Compact object population in ULXs

Grzegorz Wiktorowicz and M. Sobolewska, J.-P. Lasota, K. Belczynski

National Astronomical Observatories of China, Chinese Academy of Sciences

June 7, 2018

larger Eddington limit vs. super-Eddington accretion

Two main possibilities:

Intermediate-mass black holes

$$\sim 10^2 \div 10^5~M_{\odot})$$

- \odot stellar-mass accretors ($\lesssim 10^2 M_{\odot}$)
 - stellar-mass black holes (BH)
 - neutron stars (NS)

Wide picture

Population synthesis method

Use results of detailed evolutionary models to predict/explain observations

- large number of simulated systems ($N \sim 10^6$)
- variety of models tested

ULX formation sequence

ULXs in star-forming regions

compare Rappaport et al. 2005

About 2/3 of ULX are found in star-forming regions

1 $t \approx 4 - 40 \,\mathrm{Myr}$ BH-MS (5.6-11 M_{\odot})

2
$$t \approx 6-800 \,\mathrm{Myr}$$

NS-MS (0.9-1.5 M_{\odot})

Greg Wiktorowicz Compact object population in ULXs

ULX formation sequence

ULXs in star-forming regions

Fragos et al. 2015 ightarrow $M_{
m don}$ > 5 M_{\odot}

About 2/3 of ULX are found in star-forming regions

1 $t \approx 4 - 40 \,\mathrm{Myr}$ BH-MS (5.6-11 M_{\odot})

2
$$t \approx 6-800 \,\mathrm{Myr}$$

NS-MS (0.9-1.5 M_{\odot})

ULX formation sequence

ULXs in old stellar populations

Neutron stars in ULXs

NS are expected to be present in all ULX population!

Pulses

- Not all NS ULXs pulsate
 - Magnetic fields
 - pulses in ULP turn on and off (e.g. Bachetti et al. 2014)

Not always pulses will be visible

- below detectable limit
- observer needs to be located in the cone of the emission (Motch's talk)

"A tip of the iceberg" (King & Lasota 2016)

Neutron stars in ULXs Role of metallicity

- number of NS ULXs in nearly unaffected by metallicity, but
- number of BH ULXs grows, so
- relative nubmer of NS ULXs is **lower** for low-Z environments

Higher accretor mass (
$$\sim 10^2 \div 10^5 M_{\odot}$$
)
 \Rightarrow
Higher Eddington limit ($\sim 10^{40} \div 10^{43} \, \mathrm{erg \, s^{-1}}$)

But...

- no dynamically confirmed IMBHs
- Formation scenario still unclear:
 - population III stars (Madau & Rees 2001),
 - repeated mergers in stellar clusters

(Portegies Zwart & McMillan 2002),

- runaway mergers (Portegies Zwart et al. 2004)
- problematic to produce sufficient number

(King et al. 2004, Madhusudhan et al. 2006)

Hyper-luminous X-ray sourses (HLX)

Most luminous ULXs $(L_X > 10^{41} \, \mathrm{erg \, s^{-1}})$ stand out from the majority of ULXs. Examples are ESO 243 HLX-1 and M82 X-1 Best IMBH candidates!

- spectral states and transition unobserved in other ULXs, but similar to Galactic BH XRBs
- luminosity well beyond the XLF downturn

at $\sim 2 \times 10^{40} \, \rm erg \, s^{-1}$

• but problems still remains (e.g. Lasota et al. 2011)

Part of the ULX population may harbour IMBHs!

 NS may be ubiquitous in ULXs (mainly $\sim 1 M_{\odot}$ companions) $ULP \rightarrow$ "A tip of the iceberg" However. BHs seem to dominate in star forming regions (esp. in low-Z) IMBHs are still best candidates for HIX. $(L_{\rm X} > 10^{41} \, {\rm erg \, s^{-1}})$ and HLX are the best candidates for IMRHs¹

ULX formation sequence Most luminous ULXs

- $\bullet~$ Luminosities above $10^{41}\,{\rm erg\,s^{-1}}$
- $\bullet\,$ Formed within $< 100\,{\rm Myr}$ after burst

Wiktorowicz et al. 2015