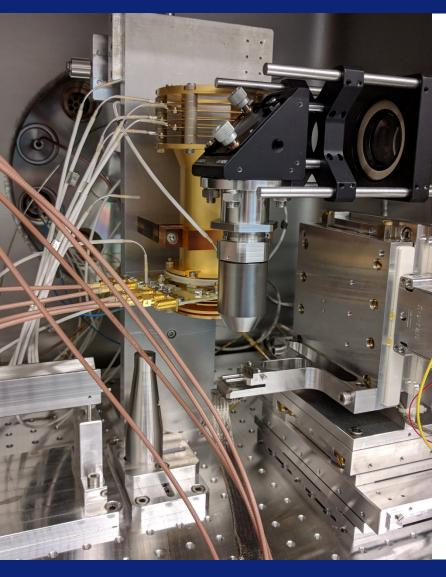
A miniature LIMS instrument for in situ chemical analysis of solids with high spatial resolution on planetary surfaces

Andreas Riedo, R. Wiesendanger, M. Tulej and P. Wurz

51st eslab symposium, December 2017



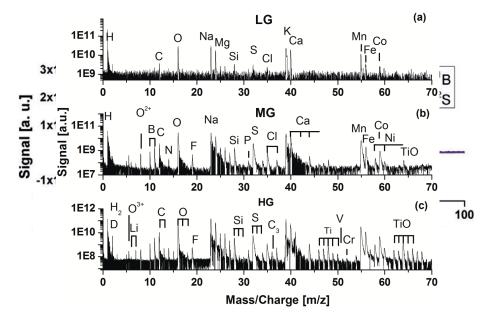
UNIVERSITÄT BERN

LMS A miniature LIMS system

Instrument

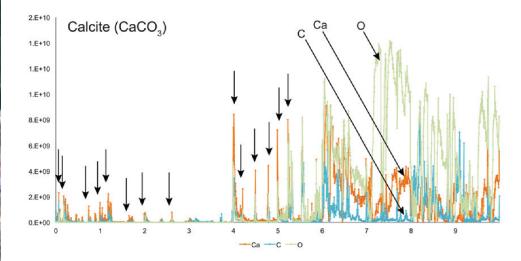
- » LIMS system designed for in-situ elemental and isotope analysis of solids
- Reflectron-type time-of-flight mass spectrometer
- A pulsed laser system is used for ablation and ionization of sample material
- » Mass analyser: Ø 60 x 160 mm
- » Flight design: ~2kg, mean ~15 25 W, ~2'600 cm³

Figure of merits


- » High detection sensitivity (~10 ppb, at. frac.)
- » Dynamic range of about 10^8
- » Quantitative
- » High spatial resolution (lateral: 10 20 μ m, vertical: nanometer)

LMS Detection of µm-sized fossils

Aragonite host with embedded micrometre-sized fossil veins


- Areas of (200 x 200) µm² containing fossil structures were investigated spot-wise
 - » By monitoring biorelevant elements the chemical depth profiling analysis of each spot allowed the identification of embedded fossil structures

LMS Detection of mineral phases

Basalt sample including mineral filamentous structures

Correlations of specific elements for the

recognition of minerals, e.g. Ni and S for

for Calcite, can be realized.

Millerite, Si and O for Quartz, or Ca, C and O

》

» Allows to "zoom in" in locations of interest, to derive chemical composition analysis of these specific layers

Thank you for your attention

Andreas Riedo riedo@strw.leideuniv.nl

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

