SPACE BIOLOGY AND SPACE MEDICINE IN THE LUNARES HABITAT IN POLAND

Dr. Agata Kołodziejczyk

Space Garden, Advanced Concepts Team, ESA, ESTEC, fichbio@gmail.com

EXTREME HABITABLE WORLDS SYMPOSIUM, 2017

AGENDA

Lunares Habitat
Experiments for Biology
Materials and Methods, Results, Conclusions
Experiments for Medicine
Materials and Methods, Results, Conclusions
Summary

EXTREME HABITABLE WORLDS SYMPOSIUM, 2017

LUNARES from LUNA (Moon) and ARES (Mars)

The habitat was opened for use in July 2017 by Space Garden Company in Poland.

It is a unique chronobiological laboratory in Europe, Specially designed to simulate lunar or martian space missions, consistent with actual plans of deep space exploration on the world.

Max. 6 analog astronauts can live together during single mission. Analog simulations can be fully autonomous controlled by astronauts crew, Or controlled fully remotely from the Mission Control Center located anywhere, from where is access to internet.

The unique feature of this facility is independent operational system Serving the time and controlling base parameters such temperature, lighting and humidity cycles.

Successful crowdfunding – 7% Private investment -93% Space Garden Company, with other private investors

MARS

The first testing lunar mission Gaining know how

Launching experiments

May 2016

August 2016

July 2017 - present

ESA UNCLASSIFIED - For Official Use

2.1

Agata Kołodziejczyk | ESLAB 2017 | Slide 4

European Space Agency

Lunares for lunar or martian analog missions, the most automated and remotely controlled habitat in the world.

Objectives:

professional analog simulations, scientific missions, educational workshops, teambuilding, testing prototypes

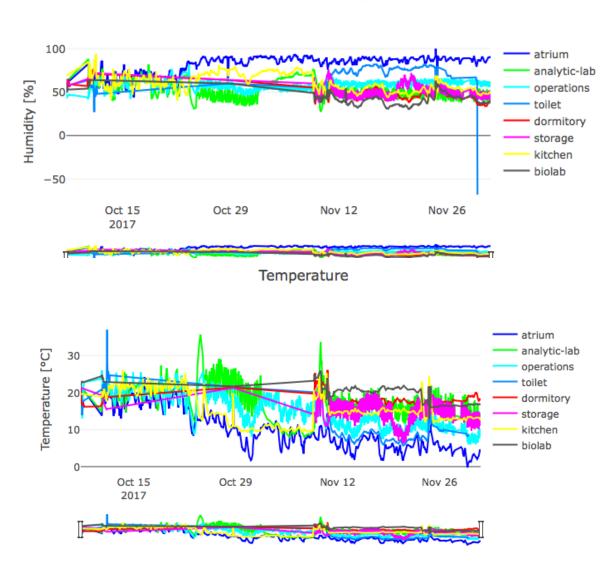
All in isolation from sunlight and UTC time!

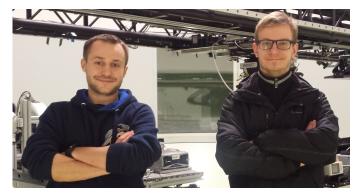
Lunares Habitat http://lunares.space

New quality of analogs for future deep space exploration

Equipment:

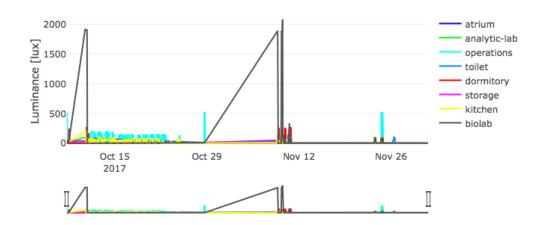
- professional technical workshop,
- biological laboratory,
- hydroponic and life support systems,
- 300 square meters of isolated EVA terrain,
- EVA spacesuits,
- rovers,
- microgravity simulators,
- remote medical devices to monitor astronauts' physiology.


Contact: office@space.garden http://space.garden



HABITAT'S SENSORY SYSTEM

Relative Humidity



Matt Harasymczuk Matt Kraiński

Time [UTC]

Time [UTC]

HABITAT'S OPERATIONAL SYSTEM

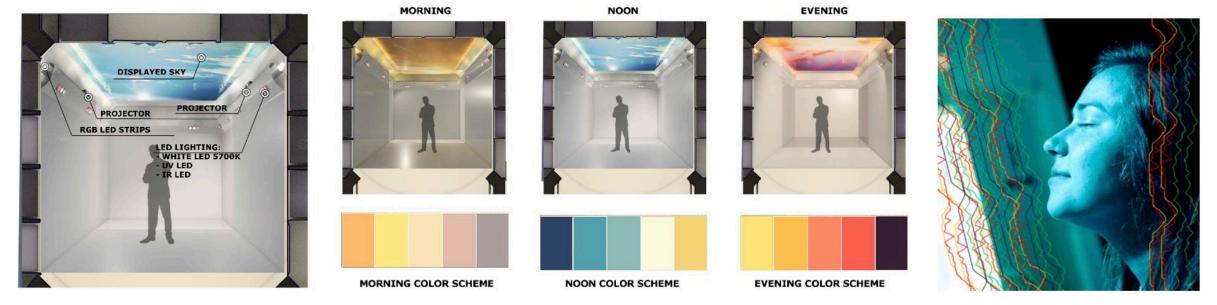
author: Matt Harasymczuk

HabitatOS			res direktores direk Adama se Adama		Agata	View site
Home						
Dashboard						
Questionaries - Visible only to you		Communication		Administration		
Mood	+	Emails	+	Shortcuts		
Sociodynamics	+	Reporting - Visible to anyo	ne	> Schedule		
Sleep	+	Daily Reports	+	> Martian Clock Converter		
Health - Visible only to you		Repair	+	> Subjective Time Perception		
Blood Pressure	+	Incident	+	Sensors		
Urine	+	Waste	+	Zwave Sensors +		
Temperature	+	Personal Diary	+			
Weight	+	Extra-Vehicular Activities	+			
		Water - Visible to anyone				

+

+

+


Technical Water

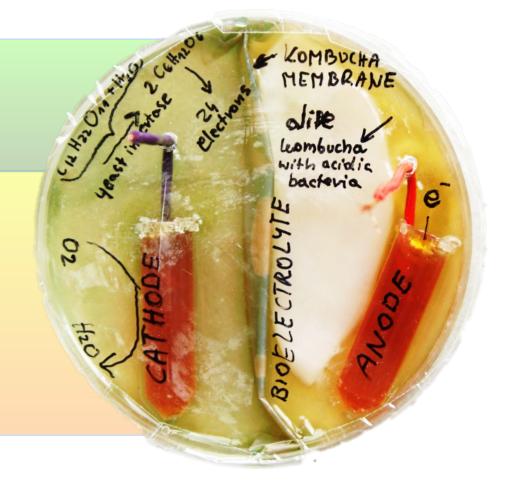
Drinking Water

Green Water

Day-night cycle and physiological lighting systems Authors: L. Orzechowski, D. Maciejewski, A. Kołodziejczyk

ARTIFICIAL DAY-NIGHT CYCLE CONCEPT

RGB Led Control
Turn Off
One Color
Two Color
Three Color
Four Color
Five Color
Six Color
All Color



ONGOING PROJECTS IN HABITAT LUNARES

BIOLOGY

- 1. Photosynthetic biomaterials
- 2. Alternative bioreactors MEDICINE:
- Time architeture: physiological lamps for synchronisation of the biological clock (protein synthesis) – optimisation of artificial Sun in isolated spaces
- 4. Subjective time perception

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk | ESLAB 2017 | Slide 10

= II 🛌 == + II == == = II II == == == II == III

Biological Experiments

Experiments concerning Productivity of Artificial Bioreactors Ecosystem

REPORT FROM THE

Lunar Expedition 1.0

PI: Dr Eng. Agata Rudolf

Analog Astronauts: Joanna Kuźma, Dorota Budzyń

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk | ESLAB 2017 | Slide 11

*

__ ■ ■ = = + ■ ■ = <u>=</u> __ ■ ■ ■ = __ = **0** ■ ■ **_** = = ** = *****

European Space Agency

Procedure 4.2.1.3. Cockroach growth curve on Tenebrio molitor homogenate

Cockroaches were maintained in 10 small plastic boxes, 3 individuals per each box, 5 boxes with males and 5 wit females. Animals were fed with 3 g of Tenebrio homogenate per each box every 3 days. Fresh homogenate was weighed and served to cockroaches. Cockroaches from each box were weighed before serving new portion of food every 3 days, three individuals at once. Animals from each of the boxes were photographed on white paper sheet to monitor aggressive behaviour or morphological changes.

Procedure 4.2.7.1. Organic waste production (how much waste organic material, a habitat produces)

A plastic container with a lid was used to collect organic waste produced by the station. The box was first weighed empty, and then each time after the addition of a new amount of collected waste organic material. The box was stored in cold to avoid material deterioration.

Procedure 4.2.8.1 Tenebrio larvae waste utilisation (how much waste material, the larvae can utilise)

Tenebrio larvae were maintained in a large plastic box (2 L volume). Larvae faeces were collected, weighed and stored for plant fertiliser. The box was cleaned and the mass of larvae was weighed. Larvae were fed with some waste organic material. The amount of food eaten by the larvae was checked daily. If all the applied material was eaten by the larvae, a new portion of food was weighed and added to the container.

Agata Kołodziejczyk | ESLAB 2017 | Slide 12

ESA UNCLASSIFIED - For Official Use

Procedure 4.2.10.1. Growing plants sprouts in different light conditions

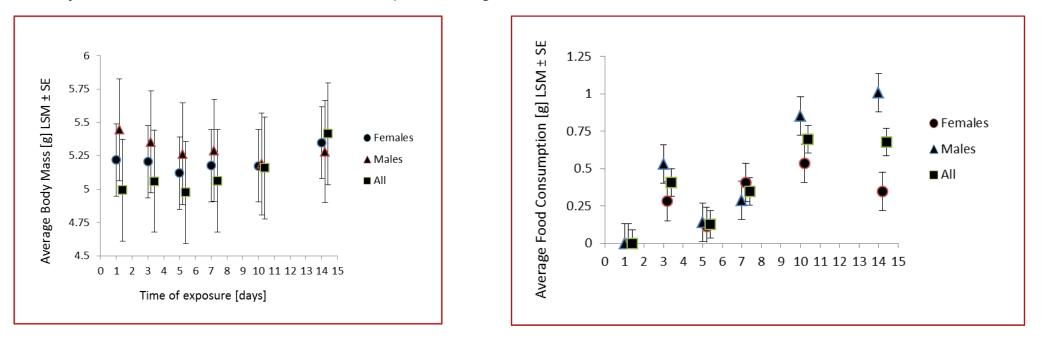
A special type of sprouts culture containers were used (Picture 1). Container, each having 3 levels, were marked as follows: L=light; D=dark; 1.1L, 1.2L, 1.3L; 2.1L, 2.2L, 2.3L; 3.1D, 3.2D, 3.3D; 4.1D, 4.2D, 4.3D. About 30 seeds of Mung Bean were weighed and placed at each level of each container. The plants were water with 200 ml of clean water. For first 24 h, all four containers were stored in light conditions. After 24 h, two containers were (3 and 4) were placed in the dark and left there until the end of experiment. Other two containers (1 and 2) were left in the light conditions. To water the plants, a water gathered at the bottom part of each container was placed back on the top of the same container twice daily. Every 3 days the old water was removed from the container and replaced with 200 ml of fresh water. The plants were weighed (all the plants from each level of each container at once) after first 24 h from sowing the seeds, and then after every 2 days, before the watering. After 5 days of experiment, the plants length was measured, when aligning together all sprouts from each level of each container. Next the fresh sprouts were served to astronauts to eat, and waste organic material (husks, remaining parts of the ruts, etc.) was collected.

Procedure 4.2.11.1 Growing plants on regolith simulant with Tenebrio fertilizer

A rock mass simulating moon regolith was placed in 24 small plastic flowerpots. 12 alive chive onions and 12 alive small parsley roots were prepared for the experiment. Green parts of both kinds of plants were cut off. About 4 cm of parsley root was cut and the upper part of the root was used. The regolith simulant was mixed with Tenebrio larvae faeces in proportion of 3:1 and 4:1 (regolith : faeces) and placed in the flowerpots. Onions and ruts were placed/planted, one in each of the flowerpot:6 onions in 3:1 mixture, 6 onions in 4:1 mixture; 6 roots in 3:1 mixture, 6 roots in 4:1 mixture. Each of the pots was weighed with a plant inside, before the watering. The height of green part of each plant was measured. Next, the plants were watered with 2 ml of clean water every two days. Measurements of weight and height were also repeated every two days.

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk | ESLAB 2017 | Slide 13

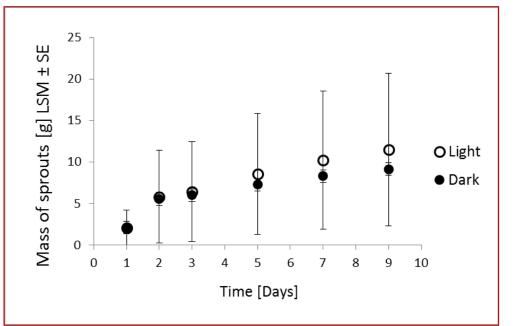

· _ II 🛌 ## ## #II 💻 🚝 _ II II 🚍 _ ## 🖬 🚺 II _ ## ##

Procedure 4.2.1.3. Cockroach growth curve on Tenebrio molitor homogenate

The results presented below are shown as least square means (LSM) \pm SE, F, df and P values at alpha 0.05 in case of ANOVA, and simple means \pm SD and P values at alpha 0.05 in case of t-test analysis. In case of some results a simple average or raw values are shown.

Feeding the Cockroaches with Tenebrio homogenate appeared to be an efficient way of sustaining the Cockroach population in the artificial ecosystem. In the future, the mass of consumed larvae should be scheduled in way to provide about 0.1 g per individual daily.

ESA UNCLASSIFIED - For Official Use


Agata Kołodziejczyk | ESLAB 2017 | Slide 14

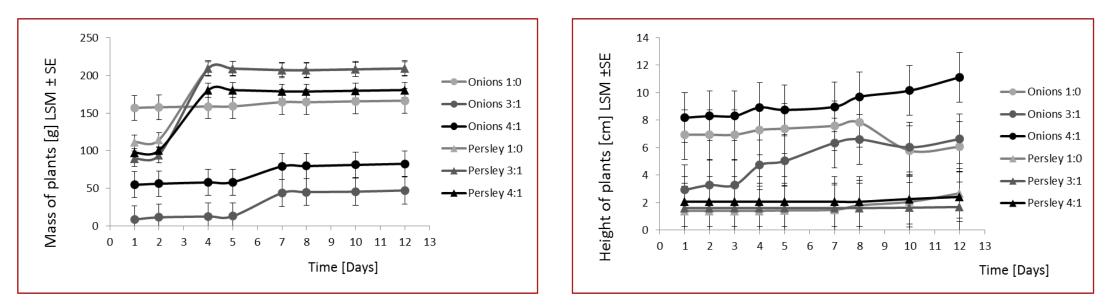
· = ■ ► = = + ■ + ■ ≔ = = ■ ■ ■ = = = ■ ■ ■ ■ = = ₩ · · ·

Procedure 4.2.10.1. Growing plants sprouts in different light conditions

The mass of Mung bean sprouts cultured in Light was higher than those kept in Dark throughout the entire experiment (Effect of the Group: $F_{1,58}$ =5.38, P=0.024). Both groups of plants significantly increased their mass (Effect of the measurement Day: $F_{5,58}$ =29.24, P<0.001). However, after 9 days of growth in constant light conditions, or in dark conditions with only 24 h light induction, the mass of the sprouts kept in the dark did not increased significantly faster than the mass of the sprouts kept in light (Effect of Day*Group: $F_{5,58}$ =0.77, P=0.572).

Conclusion: The Mung bean appeared to grow almost as well in mostly dark conditions than in conditions of constant light. The increase of biomass as well as rate of growth was comparable in both light conditions. Therefore, to save energy on lightning at the station, it is possible and most efficient to keep growing sprouts of Mung bean plant in dark conditions with only short light induction.

ESA UNCLASSIFIED - For Official Use


Agata Kołodziejczyk | ESLAB 2017 | Slide 15

__ II 🛌 :: 🖛 + II 🗯 🚝 2 II II __ 2 🔚 🛲 🚳 II __ :: 12 II 🕷 🖕

Procedure 4.2.11.1 Growing plants on regolith simulant with Tenebrio fertilizer

The mass of Onions and Parsley changed during the 12 days-long period of experiment (Effect of measurement Day: $F_{7,138}$ =64.88, P<0.001). However, for two species it did not increased in the same rate over the exposure period (Effect of Species*Day: $F_{7,138}$ =34.65, P<0.001), or in relation to experimental groups, i.e. fertilizer's concentration (Effect of Species*Group: $F_{2,138}$ =15.08, P<0.001). Therefore, the effects of experiment were species-specific, and additional statistical analyzes were performed separately for each of two plant species.

Conclusion: The mixture containing 3:1 proportion of Moon regolith simulant : feaces of Tenebrio larvae appear to be the most beneficial for plant growth among investigated soil compositions. In future experiments, this proportion should be used to maintain healthy plant growth in cultures using moon regolith simulant.

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk | ESLAB 2017 | Slide 16

__ II 🛌 :: 🖛 🕂 II 🗯 🚝 🚍 II II 🚍 🚍 :: 🖬 🛶 🞯 II 二 :: II 🖽 💥 🛀

SPACE MEDICINE IN LUNARES MISSIONS

Five missions in 2017:

- 1. Polish Mars Analog Simulation (PMAS) 31 July-13 August 2017 COMPLETED
- 2. Lunar Expedition I (LunEx I) 15-30 August 2017 COMPLETED
- 3. The first in Europe Educational mission "Youth for Moon" -11-13 September 2017 - COMPLETED
- 4. Innovative Concepts Ares (ICAres I) 08-22 October 2017 COMPLETED
- 5. Hibernity 10-24 November 2017 COMPLETED

UNIWERSYTET MEDYCZNY IM. KAROLA MARCINKOWSKIEGO W POZNANIU

KOMISJA BIOETYCZNA PRZY UNIWERSYTECIE MEDYCZNYM IM. KAROLA MARCINKOWSKIEGO W POZNANIU

Collegium Maius ul. Fredry 10 61-701Poznań

tel. (+48 61) 854 62 51 fax. (+48 61) 854 61 07 www.bioetyka.ump.edu.pl

Uchwała nr 685/17

Na podlitvić przepisiw Ustowy z dala 5 gradnie 1966 o z provolech leberze i loberze donytny (D. U. 2011, Nr 217, prz. 1614 z późs. ms.). Bozparzydzowie Ministre Zdowski i Opcidi Społeżnych 2016 I maju 1976 w sprzesie z zazpisławych sand powspownie i finanzowania orsz trybe działam konstył biosprzepis (D. U. Nr 47, prz. 481). Uzwy z dala z wzpisku 2017, prz. 481, prz. 481, prz. 1971 z piśr. w sprzek finanzowania orsz trybe działam konstył biosprzepis (D. U. Nr 47, prz. 481). Uzwy z dala z wzpisku 2017, prz. 481, prz. 481, prz. 1971 z piśr. w sprz. 1971 z piśr. z sprz. 18, prz. 1971 z piśr. z dala 2 piśr. w sprzek działa z sprzek z sprzek z sprzek z sprzek działa z sprzek działa

Komisja Bioetyczna, na posiedzeniu w dniu 06 lipca 2017 r.

rozpatrzyła wniosek dotyczący prowadzenia badań naukowych.

Kierownik projektu: dr n. med. Aleksander Waśniowski

Miejsce prowadzenia badań:

Katedra Profilaktyki Zdrowotnej Laboratorium Medycyny Ekstremalnej Uniwersytetu Medycznego w Poznaniu

Główny badacz: Członkowie zespołu

badawczego:

dr n. med. Ewelina Wierzejska dr n. med. Aleksander Waśniowski dr Agata Kołodziejczyk inż. Mateusz Harasymczuk Lucie Davidova

dr Agata Kołodziejczyk

Temat badań:

"Ocena indywidualnej percepcji czasu oraz wpływu modyfikacji biologicznych cykli okołodobowych, w warunkach symulacji długotrwałych lotów w przestrzeni kosmicznej".

Komisja wydała uchwałę o pozytywnym zaopiniowaniu tego wniosku

Przewodniczący Komisji Curre Clurch · prof. zw. dr hab. med. Paweł Chęciński

COMPLETED MISSIONS AT LUNARES

OFFICER

ICAres-1: the first mission addressing disability in space

Aleksander Waśniowski, Laboratory of Extreme Medicine, Poznan University of Medical Sciences Malgorzata Perycz.,Open Science Foundation

http://lunares.space/pl/icares-1/

Rationale: People get disabled in space

• Disability on Earth: advantage in space?

Addressing disability

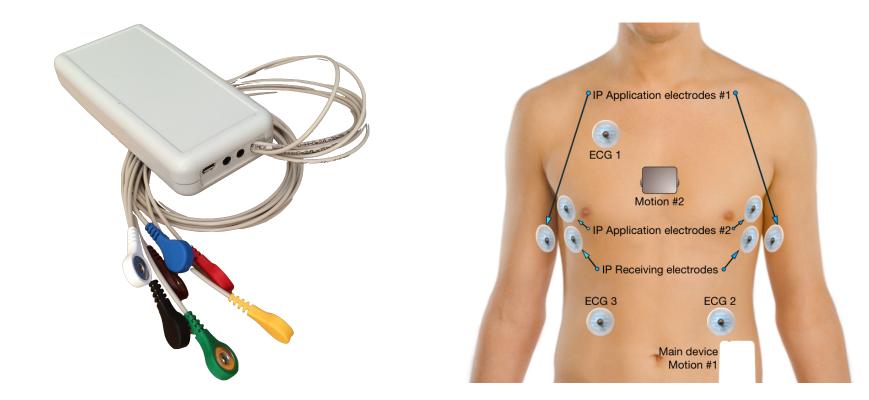
- No eyes, no hands: testing the hab for and by a person with disabilities
- PUMA-1 suit development
- Use of an off-road wheelchair as a roving vehicle for EVA
- Bionic hand 3D printing
- Targeted physical therapy and sports protocols

Towards self-sustenance

- How to survive without a drugstore: cultures of leeches and maggots in microgravity simulated conditions
- Terraforming: testing earthworms growth in chondrite
- Plant hydroponics

Living in the hab: continuation of the ongoing projects

- Sociodynamics: SocSenSys
 - Time perception



Device - Pneumonitor

Pneumonitor uses impedance pneumography technique to estimate breathing activity without a need to use a face mask or mouth piece with nose clip, along with single lead ECG and 3-axis accelerometer. Sample electrode and sensor configurations are shown below.

Materials and Methods

The experiment was performed on a group of 6 analog astronauts over 2 weeks.

4 states were considered:

- at rest,
- doing squats,
- holding breath and
- EVA.

All signals were preprocessed and annotated. The set of cardiorespiratory parameters for the time, frequency and information domains was calculated, e.g.:

 absolute spectral content in the high-frequency band (HF, 0.15 - 0.4 Hz), extracted from the respiration signal

Due to problems with detachment of electrodes, 10 full registrations (out of 15 attempts) were ultimately collected from 5 astronauts (4 males), ages 24-33.

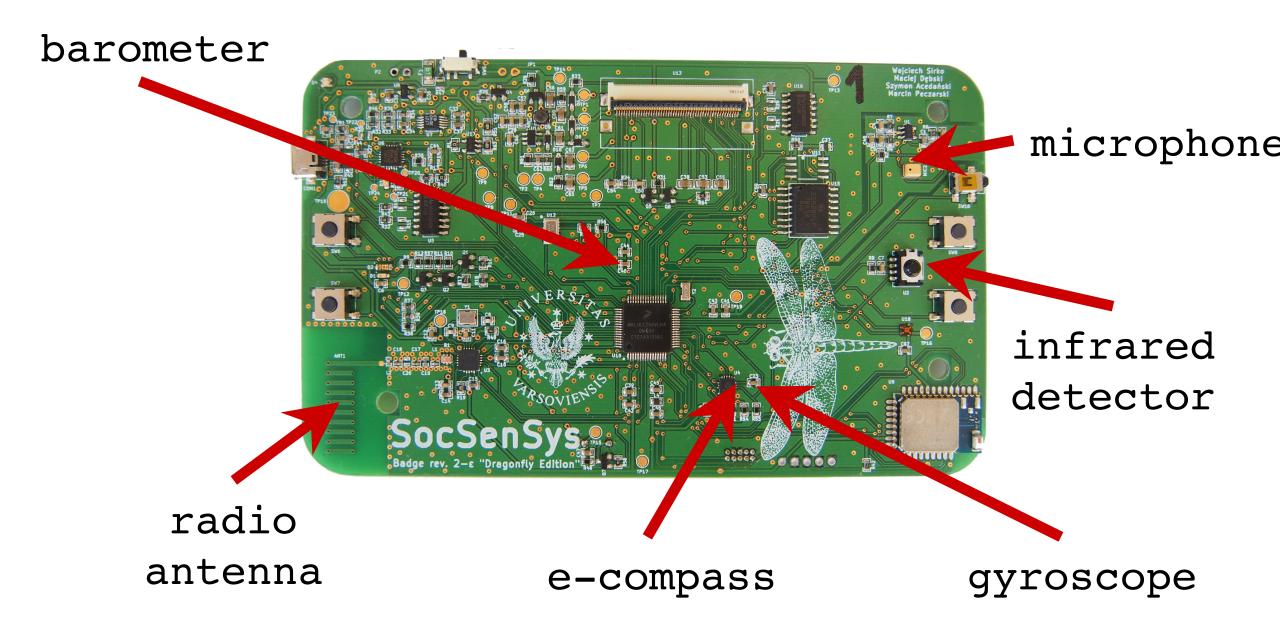
Results (1)

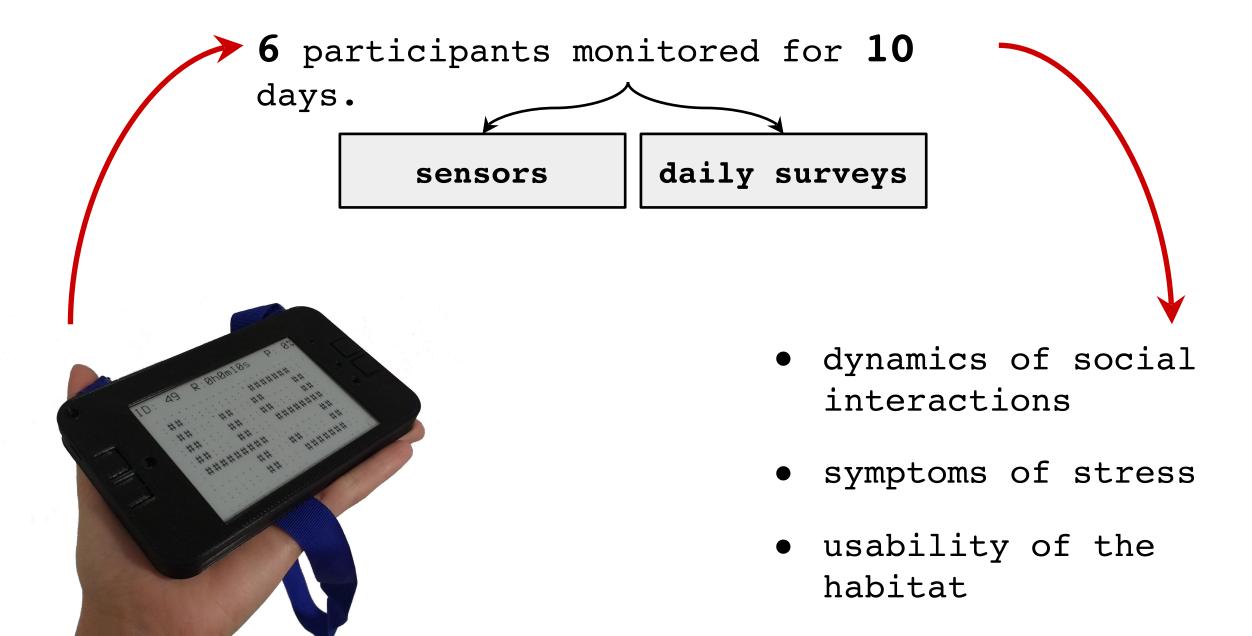
Main conclusions

- Impedance pneumography seems to be the right method to establish an astronaut's cardiorespiratory profile and adaptation during a mission.
- However, one mayor limitations appeared to be the need to develop a wearable electronic textile solution for the target electrodes, which will enable to decrease the level of detached electrodes and the comfort of the measurements.

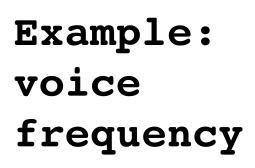
Marcel Młyńczak, Msc

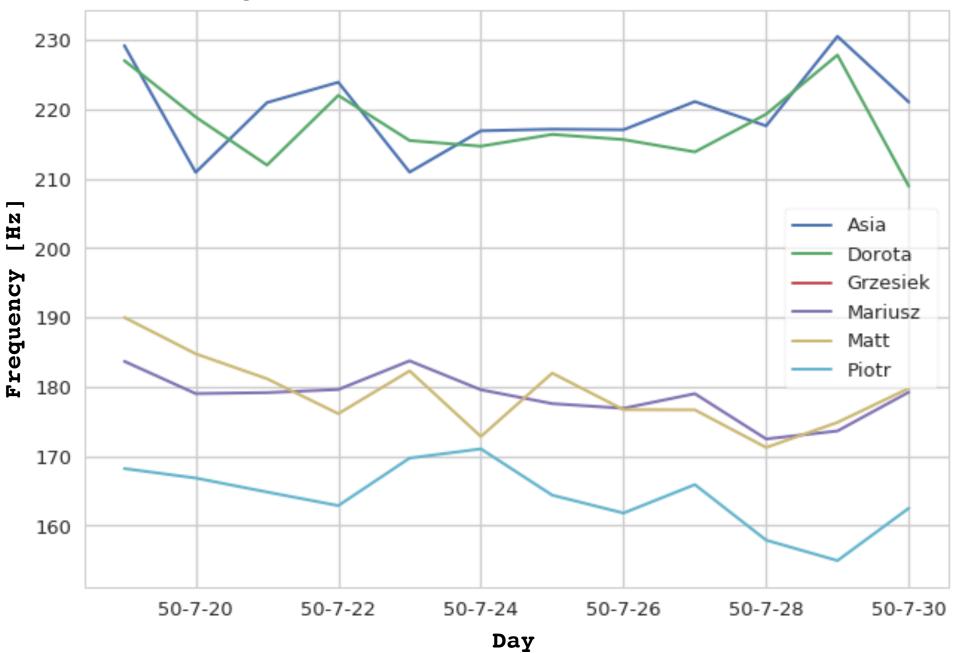
Warsaw University of Technology Faculty of Mechatronics Institute of Metrology and Biomedical Engineering


Cooperation with University of Warsaw

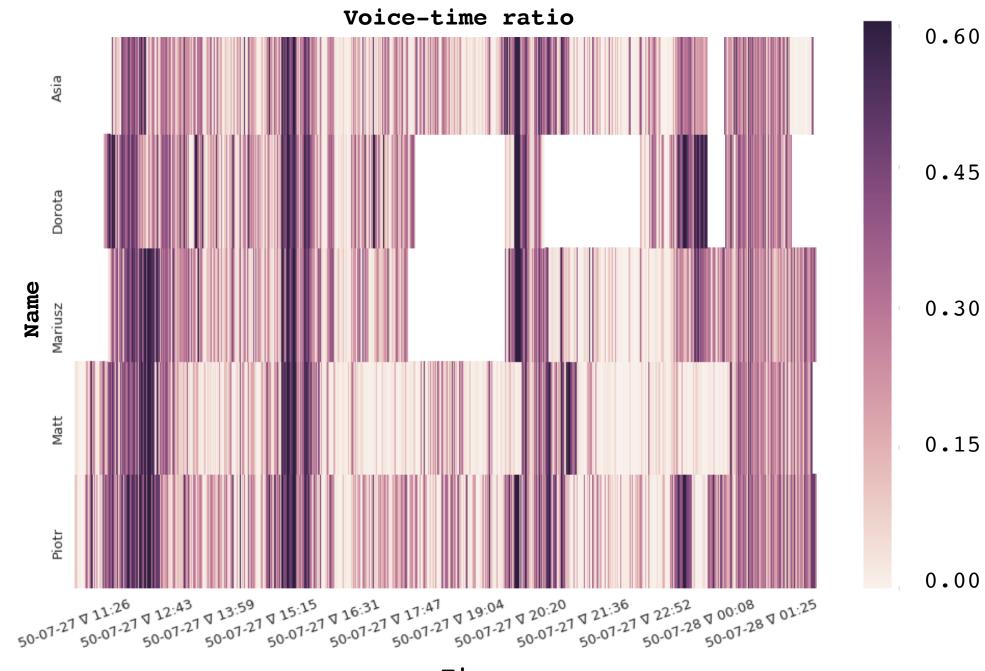

Konrad Iwanicki iwanicki@mimuw.edu.pl Maciej Matraszek m.matraszek@mimuw.edu.p

Inga Rüb i.rub@mimuw.edu.pl

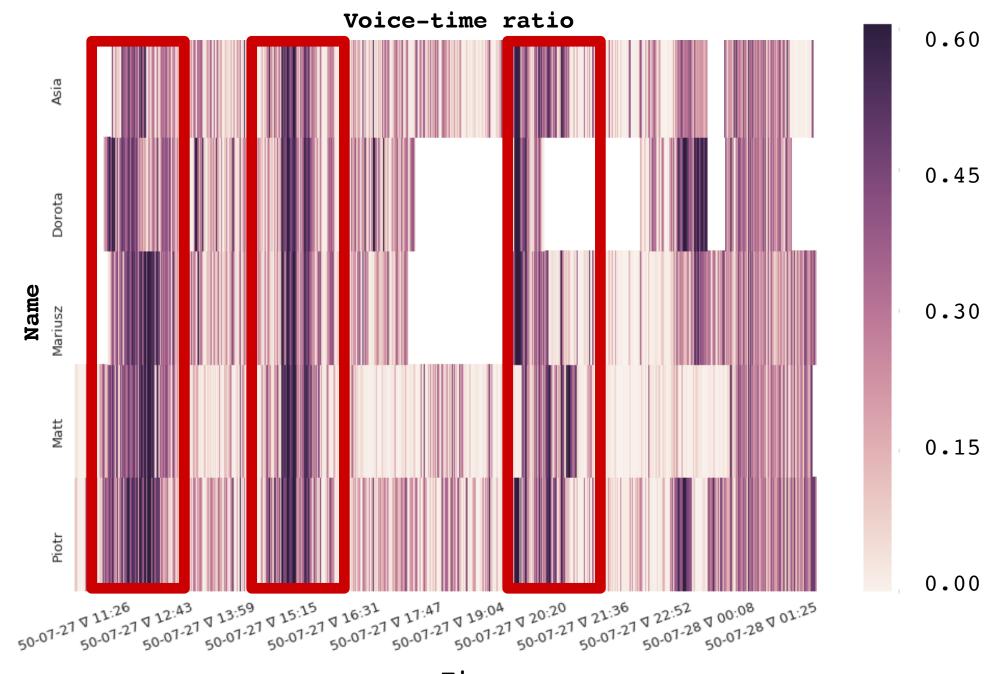

A SocSenSys badge: sensors



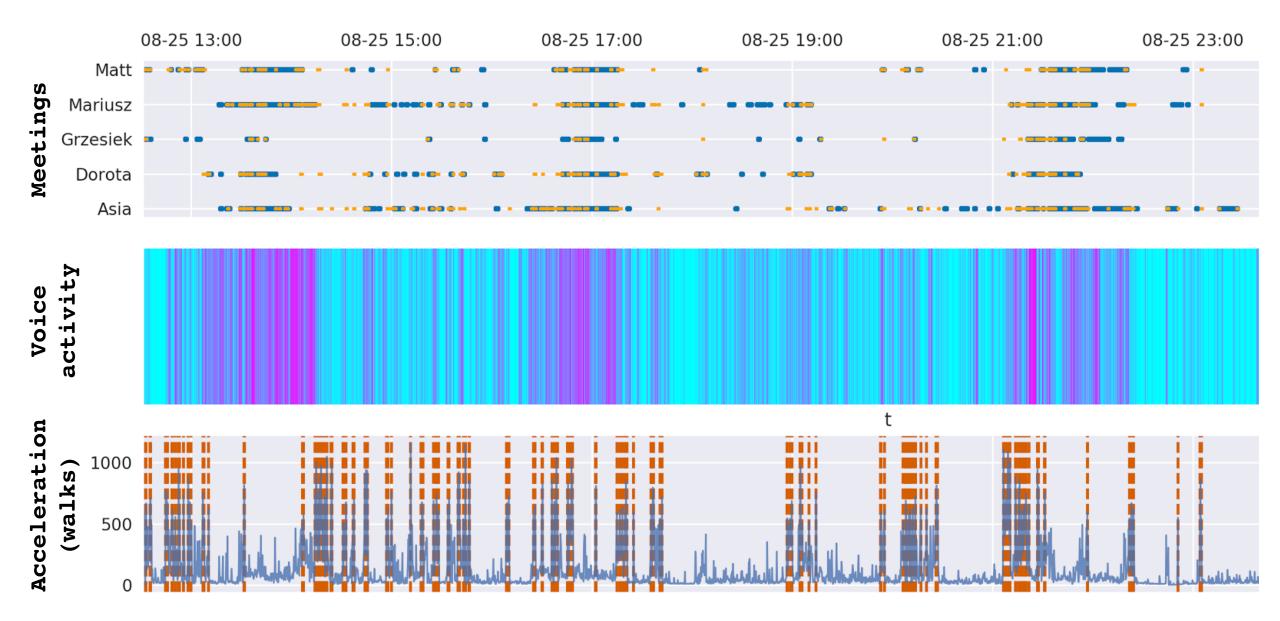
The experiment



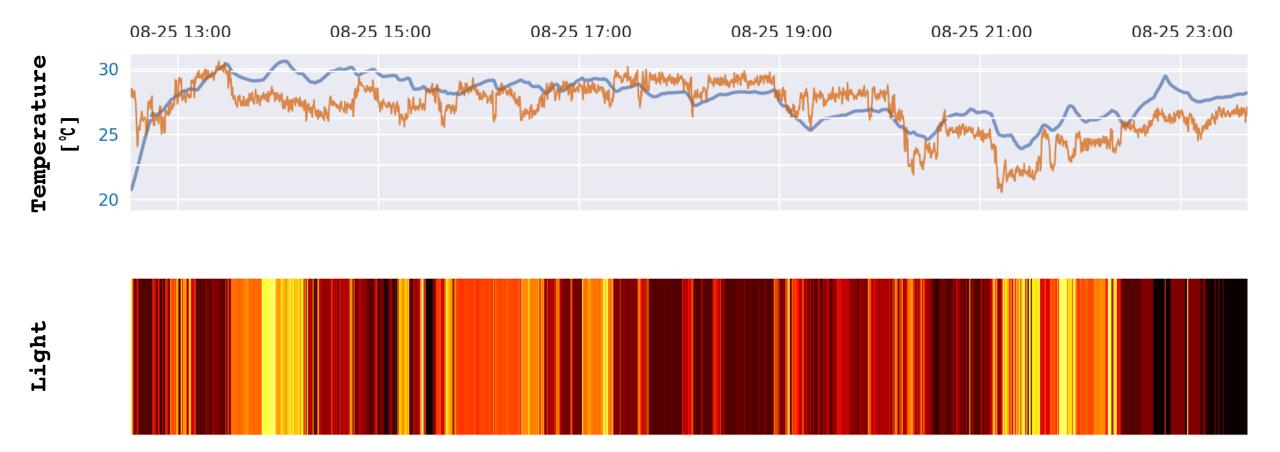
Average frequency of voice of a detected speaker



Example: detected meetings


Time

Example: detected meetings

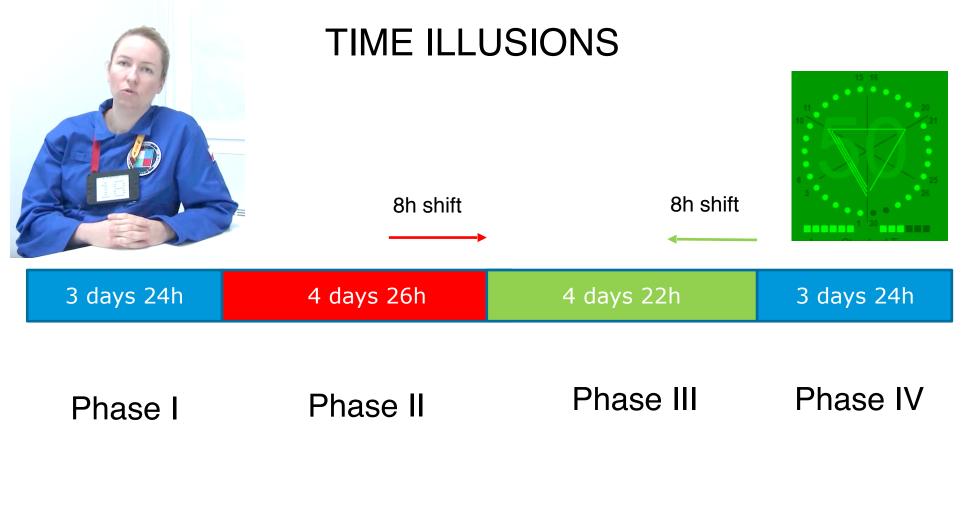


Time

Example: a recorded timeline

Example: a recorded timeline

SocSenSys


Supported by the (Polish) National Science Centre (NCN) within the SONATA programme under grant no. DEC-2012/05/D/ST6/03582.

NATIONAL SCIENCE CENTRE POLAND

For further information see:

https://www.mimuw.edu.pl/~iwanicki/projects/SocSenSys/

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk|October 2017|Slide 34

*

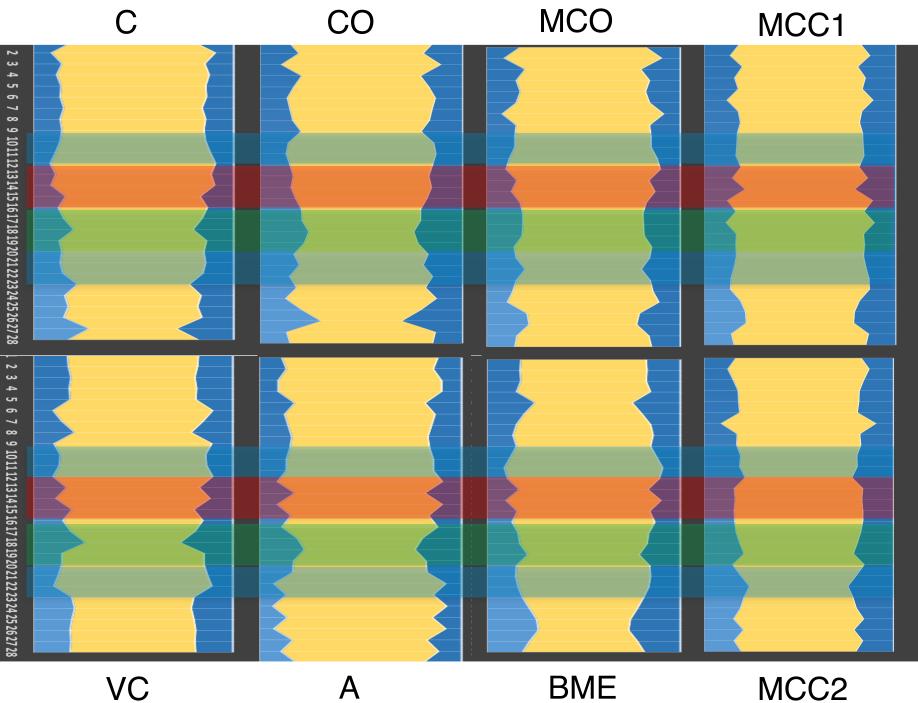
European Space Agency

LUNAR EXPEDITION 1

ASTRONAUT SCHEDULE - LEX1

- 1

LUNARES	Piotr Konorski	Mariusz Słonina	Matt Harasymczuk	Asia Kużma	Dorota Budzyń	Grzegorz Ambroszkiewicz	Twardowsky	
	Commander	V-ce Commander	Crew Medical Officer	Astrobiologist	Communication officer	Biomedical Engineer	Witcher	
	Biometry	Biometry	Biometry		-	Biometry	Meditation	
	Breakfast	Breakfast	Breakfast	Breakfast		Breakfast	Breakfast	
	Crew Briefing	Crew Briefing	Crew Briefing	Crew Briefing	Crew Briefing	Crew Briefing	Crew Briefing	
50-07-24 ⊽ 16:43:04	Switch on physiological lighting in the habitat	Preparation for EVA, put on suit and medical checkup	SPORT = 1h	Preparation for EVA, put on suit and medical checkup	Briefing with Capcom	4.2.10.1	Takes care of Myntha spirit in biosphere bottles	
	SPORT = 1h		Procedure 4.8.11	EVA: Type : Operational[O]: Search				
		Search for a mine and transport it		for a mine and transport it using a rover, map a communication range		4.2.7.1		
	Elaborate video for Embry- Riddle	using a rover, map a communication range of EVA terrain in scale 1-5		of EVA terrain in scale 1-5		SPORT = 1h		
	4.2.7.1					4.6.2.1	Makes Astronaut Positive	
		Take out suit and post-EVA medical checkup	4.2.7.1	Take out suit and post-EVA medical checkup	SPORT = 1h		Energy	
	Lunch !	Lunch !	Lunch !	Lunch !	Lunch !	Lunch !	Lunch !	
	Prepare video for Embry-Riddle	Prepare video for Embry-Riddle	Prepare video for Embry-Riddle	Prepare video for Embry-Riddle	Prepare video for Embry-Riddle	Prepare video for Embry-Riddle	Takes care of Myntha spirit in biosphere bottles	
	Preparation for EVA, put on suit and medical checkup	4.2.3.2: Photograph samples	Controls EVA from the base	4.2.8.1	4.2.4.2	Preparation for EVA, put on suit and medical checkup		
	EVA: Type : Operational[O]: 4.5.3. preparing			SPORT = 1h	4.2.7.1	EVA: Type : Operational[O]: 4.5.3. preparing the lunar terrain for the Lunarthlon		
50-07-25 ⊽ 01:31:20	the lunar terrain for the Lunarthlon	Daily Diary			Debriefing with Capcom	the lunar terrain for the Lunarthion		
	Take out suit and post-EVA medical checkup	SPORT = 1h		4.2.1.3	Switch off physiological lighting in the habitat	Take out suit and post-EVA medical checkup		
	Procedure 4.1.3	Procedure 4.1.3	Procedure 4.1.3	Procedure 4.1.3	Procedure 4.1.3	Procedure 4.1.3		
	YOGA	YOGA	YOGA	YOGA	YOGA	YOGA		
	Dinner Preparation	Dinner Preparation	Dinner Preparation	Dinner Preparation	Dinner Preparation	Dinner Preparation		
	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	
	Report	Report	Report	Report	Report	Report	Protecting the base from	
	Goodnight!	Goodnight!	Goodnight!	Goodnight!	Goodnight!	Goodnight!	bad energy	

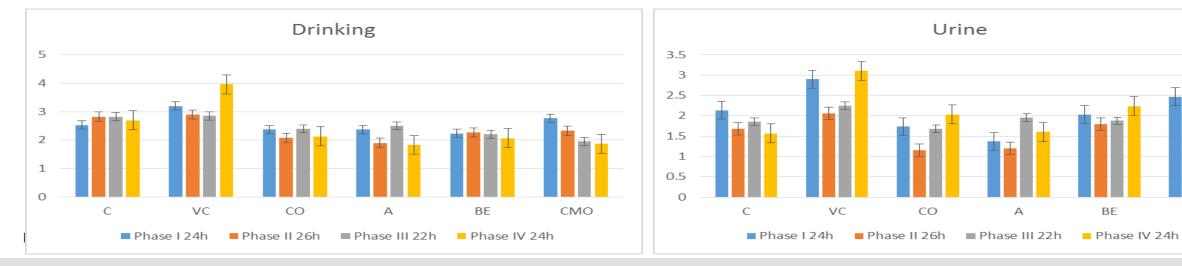

Agata Kołodziejczyk | ESLAB 2017 | Slide 35

*

Day7 Arkusz8 Legend Day1 Day2 Day3 Day4 Day5 Day6

European Space Agency

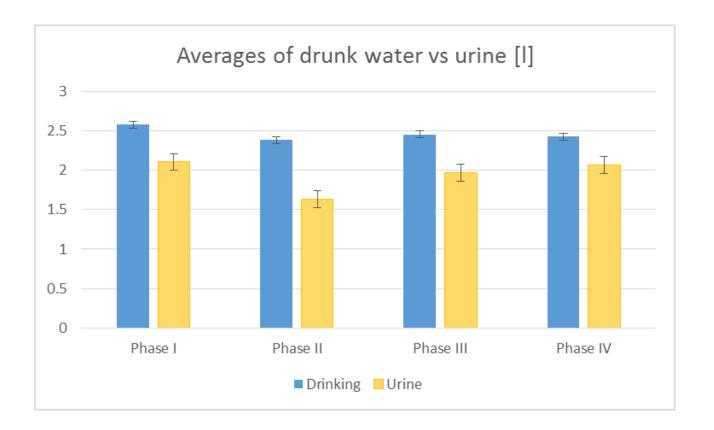
3 days 24h 4 days 26h 3 days 24h


Agata Kołodziejczyk | ESLAB 2017 | Slide 36

26

WATER

			с			vc			со			Α			BE			смо		Every	one
Missioan Day	Lunar Day	Drinking [l]	Urine [l]	Shower [min]	Technical Water	Biolab Water															
1	50-07-18	2,2	2,3	Nd	2,7	2,4	Nd	2,3	2,3	Nd	2,5	1,7	Nd	2,3	2,0	Nd	1,5	3,2	Nd	0,8	-
2	50-07-19	2,9	1,8	Nd	3,3	3,7	Nd	2,3	0,8	Nd	2,5	0,9	Nd	2,3	1,7	Nd	3,3	2,2	Nd	3,4	-
3	50-07-20	2,5	2,3	Nd	3,6	2,6	Nd	2,5	2,1	Nd	2,1	1,5	Nd	2,1	2,4	Nd	3,5	2,0	Nd	1,7	-
4	50-07-21	2,9	1,1	Nd	2,9	2,3	Nd	1,7	1,0	Nd	2,0	0,9	Nd	2,5	2,5	Nd	2,9	3,3	Nd	84,2	-
5	50-07-22	2,8	1,6	Nd	2,3	0,8	Nd	2,5	1,6	Nd	1,6	0,7	Nd	2,5	1,3	Nd	3,9	0,8	Nd	4,6	-
6	50-07-23	2,9	2,3	0,5	2,7	2,3	1,0	2,1	1,0	2,0	2,0	2,2	2,5	2,3	1,3	1,5	1,5	1,8	1,8	1,1	1,5
7	50-07-24	2,7	1,7	3,5	3,7	2,8	1,0	2,0	1,0	-	2,0	1,0	-	1,8	2,1	-	1,0	1,7	1,0	13,6	1,5
8	50-07-25	2,8	1,6	1,0	3,7	2,4	-	2,7	1,9	2,5	2,4	1,1	-	2,4	2,4	1,2	1,5	1,4	-	7,0	-
9	50-07-26	2,8	2,6	1,5	3,2	3,4	1,0	2,1	2,0	2,5	2,5	1,9	2,5	1,7	1,2	-	2,2	1,3	-	-	-
10	50-07-27	2,9	1,1	2,0	2,3	1,7	1,5	2,3	1,1	-	2,5	2,3	-	2,3	2,4	1,5	2,1	3,3	-	-	1,5
11	50-07-28	2,8	2,1	1,5	2,2	1,5	-	2,5	1,7	2,5	2,6	2,5	1,3	2,4	1,5	1,2	2,0	2,9	1,5	-	-
12	50-07-29	2,6	2,0	1,0	3,2	2,9	1,2	1,9	2,1	2,5	2,0	1,7		2,1	2,8	1,2	2,5	2,5	-	-	0,5
13	50-07-30	2,9	1,2	1,5	4,5	5,0	1,85	2,3	2,5	-	1,5	2,5		2,0	2,8	1,0	2,1	2,3	2,8	9,0	-
14	50-08-01	2,6	1,5	1,8	4,2	1,4		2,2	1,5	2,8	2,0	0,6	2,0	2,1	1,1	1,5	1,0	0,8	-	-	-
	Total:	38,1	25,2	14,3	44,5	35,0	7,6	31,3	22,5	14,8	30,2	21,6	8,3	30,8	27,3	9,1	31,0	29,3	7,1	125,2	5,0
	Average:	2,7	1,8	1,6	3,2	2,5	1,3	2,2	1,6	2,5	2,2	1,5	2,1	2,2	2,0	1,3	2,2	2,1	1,8	13,9	1,3
	Min:	2,2	1,1	0,5	2,2	0,8	1,0	1,7	0,8	2,0	1,5	0,6	1,3	1,7	1,1	1,0	1,0	0,8	1,0	0,8	0,5
	Max:	2,9	2,6	3,5	4,5	5,0	1,9	2,7	2,5	2,8	2,6	2,5	2,5	2,5	2,8	1,5	3,9	3,3	2,8	84,2	1,5



European Space Agency

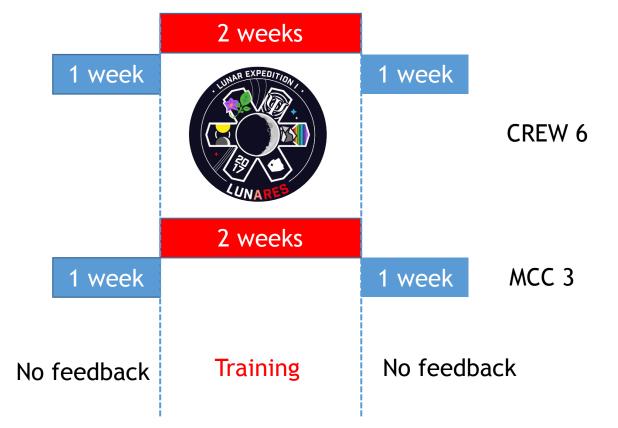
*

смо

1. Astronauts seem to release less water during jetlag phases

*

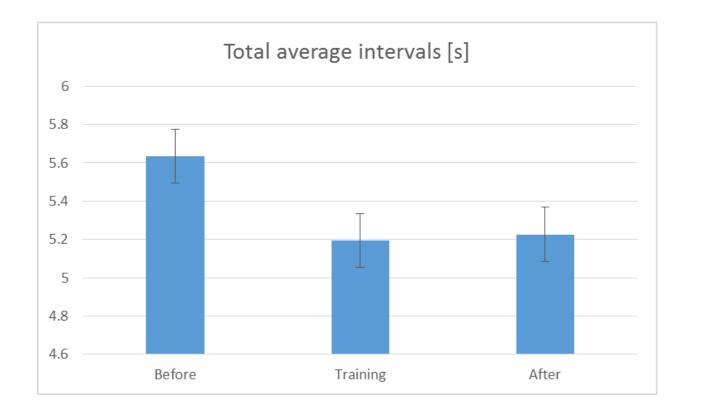
ESA UNCLASSIFIED - For Official Use


Agata Kołodziejczyk | ESLAB 2017 | Slide 38

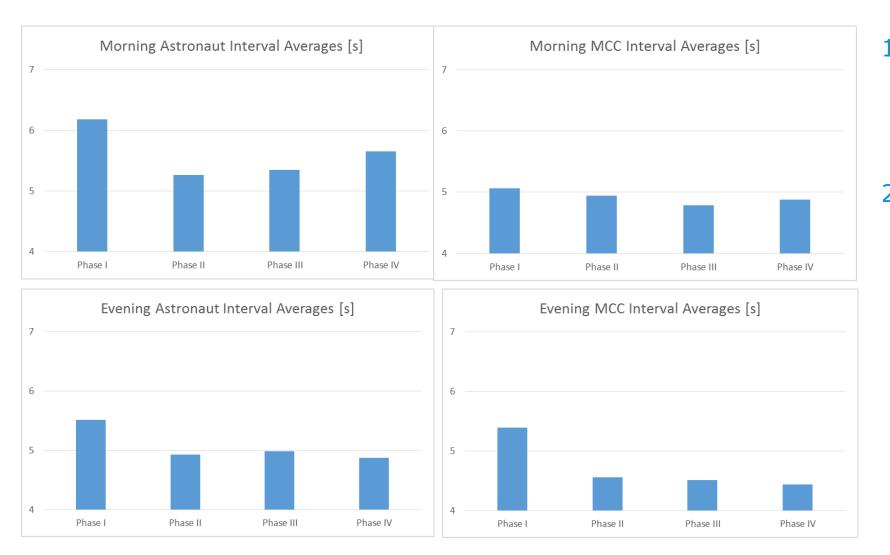
European Space Agency

COMBINED EXPERIMENTS

- 1. Monitoring of sleep and activity cycles, body temp, HR, body weight
- 2. Subjective time perception training


Parameter	All	Red	White	Blue
Count	28	10	9	9
Тетро	77.78	83.33	75	75
Regularity	0.5735	0.2835	0.4893	0.4147
Interval	6.1807	5.624	6.5231	6.4645
Time Between Clicks				
		1. 5.797	1. 6.257	1. 7.109
		2. 5.929	2. 6.003	2. 6.147
		3. 5.839	3. 5.973	3. 6.45
		4. 5.683	4. 6.476	4. 5.979
		5. 5.867	5. 6.494	5. 6.047
		6. 5.605	6. 7.383	6. 6.465
		7. 5.05	7. 7.061	7. 6.987
		8. 5.44	8. 6.538	8. 6.532
		9. 5.406		

EFFECT OF TRAINING


- Two weeks of training influenced subjective time perception.
- Induced time perception is connected with memory and learning processing in the brain

*

ESA UNCLASSIFIED - For Official Use

European Space Agency

MORNING VS EVENING TRAINING

 Acceleration is natural for subjective time perception

 Astronauts had tendency to extend 5s intervals, especially in the morning

ESA UNCLASSIFIED - For Official Use

Agata Kołodziejczyk | ESLAB 2017 | Slide 41

European Space Agency

CONCLUSION

Performing same experiments in consecutive missions allows:

- To achieve comparing results, increasing the statistical power,
- To obtain optimal manuals and procedures,
- To gain lesson learned for future crewed deep space missions.

Organized simulations in Lunares base deliver information to create an open source platform for analog missions, which main aim will be to increase the efficiency of analog human experiments for scientific, educational and other space sector communities.

But it is not the end ... more missions are planned....

Any ape can reach for a banana, but only humans can reach for the stars. v.s. Ramachandran

ESA UNCLASSIFIED - For Official Use

European Space Agency

THANK YOU :)

https://www.youtube.com/watch?v=NA1oURgOono&feature=youtu.be

LUNAR LANDER, ESA, ILEWG

UNT

CHRZĄSZCZ ROVER, MATT KRAIŃSKI

minimum

