Organic Compounds in Ice Grains from the Sub-Surface Ocean of Enceladus

Nozair Khawaja*; Frank Postberg* Fabian Klenner*; René Reviol*; Lenz Nölle*; Ralf Srama**

*Institute of Earth Sciences, Uni. of Heidelberg-Germany **Institute of Space Systems, Uni. of Stuttgart-Germany

51st ESLAB Symposium - Extreme Habitable Worlds; 4-8 December, 2017

Saturn & its Rings

Enceladus—Saturn's Active Ocean World

Cosmic Dust Analyzer (CDA)

+1000 V QC

Cosmic Dust Analyzer (CDA)

Cationic ToF Mass Spectrum

Dust Impact-Ionization Mechanism

Compositional Types in the E ring

Postberg et al. 2008, 2009, 2011 Type 1 (≈ 65%) Type 3 (≈10%) Na⁺ $H^+(H_2O)_n = 2-8$ (NaOH)Na+ $Na^{+}(H_{2}O)_{n=1-6}$ H+(H₂O) (NaOH)(NaCl)Na+ (Na₂CO₃)Na⁺ log [Amplitude] og [Amplitude] (NaCl)Na+ (NaOH)₂Na+ (NaCl)₂Na⁺ (H₂O)Na⁺ K+ (NaOH)₃Na⁺ Na⁺ Na-poor: Na/H₂O = $10^{-8} - 10^{-5}$ Na-rich: Na/H₂O > 10⁻³ 20 40 100 120 140 20 40 60 100 120 140 80 60 80 Mass (u) Mass (u)

almost pure water ice

a

salt-rich water ice

This talk \rightarrow Organic Enriched Ice Grains; Type 2 ($\approx 25\%$)

Comparison of ice impact and laser dispersion

Similar molecular ions and cluster ions are formed

Postberg et al. 2009 Beinsen 2008, 2011 Wiederschein et al. 2015

Organic Enriched Ice Grains

Type 2 Grains

2005-303/07:39:04 (1509350871)

This talk \rightarrow Organic Enriched Ice Grains; Type 2 (\approx 25%)

Organic Enriched Plume

The identification of different <u>classes of organic</u> <u>compounds</u> on the basis of their <u>characteristic</u> <u>fragment cations</u> observed in CDA TOF-MS of Enceladus' ice grains

Compositional Profile of Enceladus' Plume

Nozair, Khawaja et al., 2017

Organic Flavors in Ice Grains O-Bearing Type 2

Lab spectrum of butanal in water

N-Bearing Type 2

Lab spectrum of butylamine in water

N-Bearing Type 2

log Amplitude

Aromatic Type 2

Aromatic Type 2

log Amplitude

Lab Spectrum of Aromatic compounds

Mass [amu] Postberg & Khawaja et al., 2017 in review

Organic components exhibit a large variety in quality and quantity:

- About 25% of E ring ice grains bear organic compounds in detectable quantities.
- The concentration varies greatly from grain to grain.
- Most spectra show a mixture of different organics.
- Aromatic, O and N-bearing species have been identified and verified with analogue experimental setup in Heidelberg (IR-FL-MALDI-MS).
 - Occasional cations of more complex organics have been observed and need to be verified.