JUICE: A European Mission to Jupiter and its Icy Moons

JUICE Science Working Team and the JUICE Project Team

Contact: Olivier Witasse, ESA Project Scientist
E: Olivier.Witasse@esa.int, T: +31 71 565 8015

ESLAB51, ESTEC
JUICE science themes: Emergence of habitable worlds around gas giants and the Jupiter system as an archetype for gas giants.

A GIANT SYSTEM IN ROTATION
- Outer disk
- Inner disk
- Jupiter
- Io torus
- Ganymede
- Europa
- Large scale disruptions
- Difusive transport interchange
- Acceleration
- Aurora, radiations
- External coupling
- Electro-dynamical coupling
- Transfer of momentum

A LARGE DIVERSITY OF BINARY INTERACTIONS
- Ganymede
- Intense Radiations
- A mini Magnetosphere
- Europa
- Induced B-Field
- Ion source
- Io
- Jupiter
Schedule and milestones

- March 2007: ESA call for proposals
- May 2012: Mission selected
- February 2013: Payload selected
- July 2015: Prime industrial contractor selected
- June 2022: Launch from Kourou (Ariane 5)
- October 2029: Jupiter orbit insertion
- August 2032: Ganymede orbit insertion
- September 2033: End of mission
The spacecraft

- 3-axis stabilised
- Mass:
 - Launch mass: 5264 kg
 - Instruments: 219 kg
 - Propellant: 2857 kg
- Solar array 97 m² [Power ~850 W at Jupiter]
- Fixed High Gain Antenna and Steerable Medium Gain Antenna (X, Ka Bands)
- Data Volume ~ 1.4 Gb per day
Trajectory during the cruise phase
Trajectory during the “Jupiter tour”

Moon flybys: 2 Europa, 12-13 Callisto, 12-15 Ganymede
A flyby of Europa
Orbital phase around Ganymede
How to detect and characterise oceans?
Magnetic induction: Electrical currents in salty oceans can generate secondary magnetic and electric fields in response to the external rotating Jupiter magnetic field. Measurements at multiple frequencies with the J-MAG and RPWI instruments will constrain the electrical conductivity and extent of the ocean.
Tides

- The tidal response of the icy shells depends on the presence of ocean: ice shell decoupled from the interior. The amplitudes of surface deformation will be measured by the laser altimeter.
- VLBI may provide complementary information on the shape of the moon.
- Time variability of the gravitational potential of the moon because of the formation of the tidal bulge, to be measured by radio-science.
Librations and obliquity: The Galilean moons are locked in a stable 1:1 spin-orbit resonance. However, slight periodic variations in the rotation rate (physical librations) and the amplitudes associated with these librations can provide further evidence for a subsurface ocean. Obliquity varies also with a decoupled ice shell. Radio-Science, laser altimeter and camera will measure precisely the rotation rate, pole-position, obliquity, and libration amplitude.
Ganymede auroral oval: The locations of the auroral ovals oscillate due to Jupiter’s time-varying magnetospheric field seen in the rest frame of Ganymede. If an electrically conductive ocean is present, the external time-varying magnetic field is reduced due to induction within the ocean and the oscillation amplitude of the ovals decreases. The remote sensing and plasma/field instruments will characterise the auroral oval.

Saur et al., 2015
Analysis of the exosphere: analysis of the Moons’ tiny atmosphere issued from plumes, sputtering and sublimation of surface material, diffusion from the interior, as well as sub-surface breaching of ocean material, with PEP, SWI, J-MAG, RPWI, JANUS, MAJIS, UVS.

Huybrighs et al., 2017
Stay tuned!