

Declared as Deemed to be University under Section 3 of UGC Act 1956

Indexing of exoplanets in search for potential habitability: application to Mars-like worlds

By MADHU KASHYAP JAGADEESH M. Sc, M. Phil, (PhD, Student) Poster Number: P23

J. M. Kashyap, S B Gudennavar, U. Doshi and M. Safonova Email: kas7890.astro@gmail.com

ESLAB/ESA 2017

Data and Analysis

Data Source: For 3500+ exoplanets

- 1. Habitable Exoplanet Catalog-University of Puerto Rico (www.phl.upr.edu)
- 2. Solar system dynamics database-JPL, CalTech (<u>www.ssd.jpl.nasa.gov</u>)
- 3. Exoplanet.org/eu.

Calibration of Surface Temperature

Declared as Deemed to be University under Section 3 of UGC Act 1956

ALURU, INDIA

BE

N G

J. M. Kashyap et al. (2017), Astrophys Space Sci

Earth Similarity Index (ESI)

ESI is a scale to measure the similar parameters as that of Earth.

$$ESI_x = \left(1 - \left|\frac{x - x_0}{x + x_0}\right|^m\right)^{w_x}$$

Where, **x** is the property of the planet- in this case, either **radius**, **density**, **escape velocity** or **temperature**.

 $\mathbf{x_0}$ is the value of this property for Earth,

m is the input variable

 $\mathbf{w}_{\mathbf{x}}$ is the weight exponent of a property.

Calculated weight exponents

Planetary Property	Ref. Value	Ref. Value	Weight Exponents	Weight Exponents
	for ESI	for MSI	for ESI	for MSI
Mean Radius	1EU	1MU	0.57	0.77
Bulk Density	1EU	1MU	1.07	2.09
Escape Velocity	1EU	1MU	0.70	1.04
Surface Temperature	288K	240K	5.58	3.08

Interior, Surface ESI & Global ESI

 $ESI_I = (ESI_r \times ESI_\rho)^{1/2}$

$$ESI_S = (ESI_e \times ESI_T)^{1/2}$$

$ESI = (ESI_I \times ESI_S)^{1/2}$

Comparison of ESI_sand ESI_I

Scattered ESI Plot results

Mars Similarity Index (MSI)

MSI is a scale to measure the similar parameters as that of Mars.

$$MSI_{x} = \left(\left[1 - \left(\frac{x - x_{0}}{x + x_{0}} \right)^{n} \right]^{W_{x}} \right)$$

Where, **x** is the property of the planet- in this case, either **radius**, **density**, **escape velocity** or **temperature**.

 $\mathbf{x_0}$ is the value of this property for Earth,

m is the input variable

 $\mathbf{w}_{\mathbf{x}}$ is the weight exponent of a property

Interior, Surface MSI & Global MSI

$$MSI_I = (MSI_R \times MSI_\rho)^{1/2}$$

 $MSI_{S} = (MSI_{T} \times MSI_{v_{e}})^{1/2}$

 $MSI = (MSI_I \times MSI_S)^{1/2}$

Comparison of interior and surface MSI

Declared as Deemed to be University under Section 3 of UGC Act 1956

RSITY

IND

Scattered MSI plot result

Mass v/s Radius Plot in (EU)

Conclusions

- Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets.
- From our study, we found that 20 Earth-like exoplanets with ESI value above 0.8 are potentially habitable planets.
- ▶ 12 Mars-like planets with MSI, to search methane specific extremophiles.

Thank you ! Email: kas7890.astro@gmail.com

References

Schulze-Makuch D., et al."A two-tiered approach to assess the habitability of exoplanets," *Astrobiology*, **11**, 1041 (2011).

Kashyap J. M., Safonova M. and Gudennavar S. B., "ESI and MSI data sets2", *Mendeley*, 2017. http://dx.doi.org/10.17632/c37bvvxp3z.6.

Thank you ! Email: kas7890.astro@gmail.com

