

Technology Roadmaps for the Moon and Mars Exploration

51 ESALAB Symposium December 7th 2017, ESTEC Netherlands

Maria Grulich (<u>maria.grulich@esa.int</u>) Guillermo Ortega (<u>guillermo.Ortega@esa.int</u>) Prof. Bernard Foing (<u>bernard.Foing@esa.int</u>)

07/12/2017

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use Source: http://www.valador.com/wp-content/themes/agivee_valador/infogmaphio/get/ch, Guillermo Ortega | 07/12/2017 | Slide 2

EXPLORATION TECHNOLOGY ROADMAPS BY TEC

- ESA initiated in 2013, under leadership of the Directorate for Technical and Quality Management, the **development** of its technology **roadmaps** for space exploration
- Two iterations of these roadmaps have been developed so far, one in 2013 and an updated version in 2017
- This handout has the target to particularise the exploration technology roadmaps for the exploration of Moon and Mars

ESA UNCLASSIFIED - For Official Use

+

OPERATIONAL CAPABILITIES FOR THE MOON EXPLORATION

ESA UNCLASSIFIED - For Criticial Use

Maria Grulich, Guidermo Ortega | 07/12/2017 | Slide 4

OPERATIONAL CAPABILITIES FOR THE MARS EXPLORATION

ESA UNCLASSIFIED - For Criticial Use

Maria Grulich, Gullerroo Ortega (02/02/2017 | Slide 5

FUNDING SOURCES FOR EXPLORATION TECHNOLOGY

TRP and GSTP

Technologies for exclusive use of the Moon and Mars exploration or with multi-domain application

Programs approved at CM2016

ExPeRT, Luna-Resource Lander, SciSpacE, ...

Other ESA programs outside Exploration

Technologies with an application potential also for the Moon and Mars exploration

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 6

TECHNOLOGY AXES FOR THE EXPLORATION

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 7

LIFE SUPPORT AND HABITATS

ENERGY PRODUCTION AND STORAGE

ROBOTICS AND TELE-OPERATIONS

Flying robots on spacecraft

Robots for surface operations

Tele-operations from Earth

Rovers for mobility

Tele-operations from surface

GUIDANCE, NAVIGATION AND CONTROL

COMMUNICATIONS

EXAMPLE OF TECHNOLOGY FOR NAVIGATION

Mission Arc	Error Box Requirements (3σ)
Interplanetary cruise	500/10000 km (Asteroid / Planet Encounter) 500-1000 km for low-thrust DS maneuver
Interplanetary approach	3 km up to encounter (asteroid) 30 km up to – 3 hrs (gravity assist)
Far rendezvous	100 km distance error knowledge 1 deg accuracy azimuth and elevation
Intermediate rendezvous	10 km distance error knowledge 0.1 deg accuracy azimuth and elevation
Close cooperative rendezvous	10 m distance error knowledge 0.01 deg accuracy azimuth and elevation
Descent	Velocity < Mach 2 (parachute opening) TAEM gate better than 2000 m wide
Landing and touch down	Velocity < 1 m/s (soft_Landing) Precision landing better than 200 m

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 13

= II 🖕 :: 🖛 + II 💻 🚝 = II II = = = :: 🖬 🛶 🚺 II = :: II 💥 👀

CURRENT NAVIGATION TECHNOLOGY

Mission Arc	Current performances	Means
Interplanetary cruise	10000 km (Asteroid / Planet Encounter) with NPAL camera	
Interplanetary approach	30 km (gravity assist) with NPAL camera	ESO (HR) & Camero (riph) ESO (HR) & Camero (riph) ECB
Far rendezvous	300 m distance error knowledge at 20 Km with LABEN ATV GPS receiver (corporative rendezvous)	alla -t
Intermediate rendezvous	1 m distance error knowledge at 1000 m with JENA Laser Range Finder (corporative rendezvous)	
Close cooperative rendezvous	0.2 m distance error knowledge at 50 m 0.01 deg accuracy azimuth and elevation with JENA Laser Range Finder (corporative rendezvous)	
Descent	Velocity < Mach 2 (parachute opening) TAEM gate better than 2000 m wide	5
Landing and touch down	Velocity < 5 m/s (hard Landing) Precision landing of 50 Km with ExoMars RDA sensor	•

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 14

■ II ≥ II = + II = ⊆ II II = Ξ = H = Ø II = II W

HAZARD AVOIDANCE MANOEUVRES

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 15

_ II ⊾ := = + II = ≝ _ II II = = = II = 0 II _ II = := !*

RETARGETING FUNCTION FOR HAZARD AVOIDANCE

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 16

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ = = = ■ ■ ■ ■ ■ = = ₩

MOON LANDING SITES EXAMPLES

VISUAL NAVIGATION, HAZARD DETECTION AND AVOIDANCE

Visual navigation, hazard detection and avoidance Building Block composed of subblocks:

- ●1.- Sensors
- 2.- Image Recognition and Processing for Navigation
- ●3.- Data fusion
- ●4.- Advanced Guidance and Control algorithms
- ●5.- High Performance Computing
- ●6.- Multi-disciplinary Optimization
- ●7.- Verification and Validation

ESA UNCLASSIFIED - For Official Use

Maria

European Space Agency

ermo Ortega | 07/12/2017 | Slide 18

SENSORS

esa

- Vision-based cameras
- LIDAR
 - ⊖flash, scan
- Multi-spectral cameras
 IR and UV
- Altimeters
 - ⊖laser, radar

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 19

SENSOR EXAMPLES

- NPAL Navigation for Planetary Approach and Landing camera + image processing board + navigation filter
- PILOT navigation camera (more of this in the next presentation)
- ABPA radar and laser altimeters
- JOP scanning LIDAR
- CAMIR InfraRed camera

IMAGE RECOGNITION AND PROCESSING FOR NAVIGATION

- European FEIC (Feature
 Extraction and Image
 Correlation)
- Optical Flow Correlators
- Beyond the Kalman Filter estimators
 - deterministic,stochastic

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 21

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ Z = :: II ₩ . II _ II . .

EXAMPLES OF MAGE RECOGNITION AND PROCESSING FOR NAVIGATION

- Relative Navigation vs Absolute Navigation
- UNI Dundee, UK FEIC (Feature Extraction and Image Correlation): feature detection and feature extraction
- UNI Dresden, Germany Optical Flow Correlator
- GMV Beyond the Kalman Filter estimators:
 - Deterministic estimation: Kalman-like estimation, Wiener estimator (WE), Particle filter estimators (PF), Method of moments (MoM), Minimum-variance unbiased estimator (MVUE)
 - Stochastic estimation: Maximum likelihood estimators (ML), Bayes estimator (BE), Minimum mean squared error estimator (MMSE), Maximum a posteriori estimation (MPE), Markov chain Monte Carlo (MCMC

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 22

-

DATA FUSION

Hybrid Navigators: \bigcirc Loosely coupled ●STR and INS ●INS and CAM ●INS and LIDAR ■LIDAR and CAM Tightly coupled ●GPS and INS when GPS is available

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 23

EXAMPLES OF DATA FUSION FOR LANDING

- Modular Vision-Based Navigation System design composed of building blocks
 - Image Acquisition System: optics, detector, acquisition, pre-processing
 - Image Processing Board (IPB): implements both HW and SW IP functions through mix of DSP and FPGA (ASIC in a flight implementation)
 - Inertial Measurement Unit (mission-dependent): required by navigation for rolling shutter compensation and aiding
 - Star tracker

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 24

ADVANCED GUIDANCE AND CONTROL ALGORITHMS

- Optimal guidance profiles for descent and landing
- Re-targeting functions
- On-Board Real-Time Trajectory
 Optimization
- Advanced Robust Multi-variable Control

ESA UNCLASSIFIED - For Official Use

· = ■ ► = = + ■ = ≡ = ■ ■ = = = = = ■ ■ ■ ■ ■ = = = ■ ■

EXAMPLES OF ADVANCED GUIDANCE AND CONTROL ALGORITHMS

esa

Optimal guidance for descent and landing

Advanced multivariable robust control for high accuracy re-targeting functions

Automatic generation of production code (C code) is TargetLink® from dSPACE

Simulates and analyses Entry, Descent and Landing systems on planetary bodies with or without atmosphere

ESA UNCLASSIFIED - For Official Use

HIGH PERFORMANCE COMPUTING

- Multiple Cores CPUs
- European FPGA and DSP
- High performance data buses
- Electronic Data Sheets
- Many-cores Real-Time Operating Systems
- Time and Space Partitioning

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 27

EXAMPLES OF HIGH PERFORMANCE COMPUTING

- European elements for high performing data handling architectures:
 - FPGA and DSP
 - Multi-core computers with fault tolerance features
- Real-time Software performance for high computing architectures

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 28

MULTI-DISCIPLINARY OPTIMIZATION

- Optimization of trajectories, propulsion, and staging all at once
- Optimization of placement
 of sensors and actuators
- Co-design of Structures and Control

ESA UNCLASSIFIED - For Official Use

EXAMPLES OF MULTI-DISCIPLINARY OPTIMIZATION

- Optimization at once of trajectories, structures, propulsion for Moon landers
- MDO for Moon ascent vehicles: single stage vehicle with all-at-once design optimization
- Co-design of control and structures
- Optimization of sensor placements across mission arcs, mission types, and mission requirements

Maria Grulich,

ESA UNCLASSIFIED - For Official Use

□ II ▶ II ■ + II ■ ≥ □ II II □ □ □ H → II □ H ≥ ↓

' I Slide 30

European Space A

VERIFICATION AND VALIDATION

- Simulators and Emulators
- SIL=>PIL=>HIL testing sequences
- Ground test benches for optical, infrared and LIDAR V+V
- All-at-once verification and validation facilities
- In-Orbit Demonstrators

ESA UNCLASSIFIED - For Official Use

_ II ⊾ :: ■ + II ■ ½ _ II II _ Z = :: II ▲ M II _ II

European Space Agency

esa

EXAMPLES OF VERIFICATION AND VALIDATION

- PANGU Surface modeller: realistic surfaces (MLI, OSR, solar cells...)
- GNC Ground Testing Facilities
 - DLR TRON For Descent and Landing
 DLR EPOS For Rendezvous and Docking
- PLGTF (ESA) Ground demonstrator
 MORPHEUS (NASA) Ground demonstrator
- SPARTAN Ground Demonstrator
- LIRIS In-Orbit Demonstration opportunities

ESA UNCLASSIFIED - For Official Use

Maria Grulich, Guillermo Ortega | 07/12/2017 | Slide 32

*

Ready to Start Exploring?

Contact: Maria Grulich (<u>maria.grulich@esa.int</u>) Guillermo Ortega (<u>guillermo.Ortega@esa.int</u>) Prof. Bernard Foing (<u>bernard.Foing@esa.int</u>)