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A new window onto the Universe

Planck

The history of Astronomy: new 
bands of the EM spectrum  

opened -->  major discoveries!

GWs aren’t just a new band, 
they’re a new spectrum, with 

very different and 
complementary properties to EM 

waves.

Distortions of space-time (not in 
space-time), propagating at the 

speed of gravity (light)

Generated by accelerating 
mass/energy, e.g., coherent 
motion of huge masses; not 

vibrations of electrons in atoms

GWs are ~immune to scattering / 
obscuration / absorption… not 

immune to gravitational lensing

Detectors are rulers as opposed 
to buckets. 

Sensitive to amplitude instead of 
power— signal falls off as 1/r. 
Direct measure of Luminosity 

Distance

Gravitational waves offer a unique probe into some of the most extreme
systems in the Universe. They originate from merging black holes; from binary
stars orbiting at close to the speed of light; from supernovae, and from the Big
Bang itself.
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Our observational landscape
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Potential Gravitational Wave Sources
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5



LVK current and future observing runs:
Important detector improvements between O3 and O4
• Higher laser power
• Frequency-dependent squeezing
• Noise reduction & duty cycle improvements
• + Improvements to processing of data for use by searches

Not comprehensive! These are just some highlights.
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https://observing.docs.ligo.org/plan/

O4 observing run: 

O4a: May 24th 2023- January 16th 2024
O4b: April 10th 2024- January 23rd 2025 
O4c: January 24th 2025- June 9th 2025 

KAGRA delayed due to 7.6 magnitude 
earthquake on Jan 1, 2024

The GW network will continue improving 
in sensitivity…
• …and thanks to that 1/r thing, make 
substantial improvements in sensitive 
volume…
• …which means more opportunity for 
multi-messenger events



• Events will also be better 
localized thanks to
• increased sensitivity 

of detectors
• increased capabilities 

of the global network 

• Current forecasts for 
localization suggest that 
~50% of BNS to be 
localized w/in ~30 sq deg.
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LVK- Observing runs:

Credit: LIGO-P1200087



Impact of LIGO-India on Localizing Events

Adding LIGO-India to the Hanford-Livingston-Virgo-KAGRA network helps localization,
but additional benefit comes from increasing the fraction of the time when there are 4 or 3 sensitive 
detectors operating

e.g., 80% duty cycle sounds good, but 0.8 5 = 0.33 ; would have 4 detectors working 41% of the time

Example: improvement from going from 3 sites to 4:
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Multi-messenger Astronomy with 
Gravitational Waves

X-rays/Gamma-rays
Gravitational Waves

Binary Neutron Star Merger

Visible/Infrared Light

Radio Waves

Neutrinos

High energy cataclysmic astrophysical events can reveal themselves through the emission 
of gravitational-waves, electromagnetic radiation (photons), neutrinos, and cosmic rays 
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optical

radio

gamma rays,

x-rays

neutrinos

• EM triggers  GW detector analysis
– From, e.g., space-based X-ray and gamma ray telescopes
– Knowing precise time and sky location of event reduces 

noise contamination in GW detector network; searches 
can go deeper

• GW detections   Pointing EM telescopes
– To catch prompt emission, must point quickly
– We have developed low-latency GW detection and sky 

localization pipelines, protocols to pass info, telescope 
scanning strategies and coordination

• GW detections + all-sky telescopes
– E.g., neutrino detectors, optical transient surveys, wide-

field radio transient surveys
– Can be done offline, using data “in the can” – “data 

mining”

Multi-messenger Astronomy with Gravitational Waves
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GRB 170817A - GW170817: The Dawn of GW MMA 
Coincident Detection with Gravitational Waves and Gamma Rays.
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LIGO and Virgo and partners made first detection of gravitational waves and light produced by colliding neutron stars. 
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GW170917/GRB170817A : 
“Multi-Messenger Observations of a Binary Neutron Star Merger”
B. Abbott et al.,  ApJL 848 (2017) L12
59-page “letter” (!).    More than 3000 authors,~70 collaborations

First unambiguous EM counterpart to a GW source 

• Gamma Ray transient classified as sGRB detected by Fermi-GBM 2s 

after inferred GW merger time.
• Host galaxy discovered by dedicated optical follow-up. 

• “Whole of astronomy” broadband analysis of kilonova and host galaxy.

• Vivid demonstration that joint observations are > sum of their parts.
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GW170817: Multi-Messenger Breakthrough!

The BNS merger “chirp” was very strong in the gravitational-wave (GW) data and was accompanied by a short GRB detected by Fermi/GBM 
and INTEGRAL/SPI-ACS. 
An optical counterpart was found in the galaxy NGC 4993 and studied intensely at all wavelengths, tracing out a kilonova light curve which was 
visible for weeks plus X-ray and radio emission which peaked after ~100 days and was detectable for over a year.

Price/Rosswog/Press

[ Abbott et al., PRL 119, 161101; ApJ 848, L13; ApJ 848, L12 ]

➔  Confirmed picture of BNS mergers  as progenitors of short-hard GRBs 
— in this case, detected off-axis by 15±5°, corroborated by VLBI imaging
  [ Mooley et al., Nature 561, 355 ]

➔  Verified to high precision that  GWs travel at the speed of light

➔  Enabled new measurement  of the Hubble constant
[ Eight teams, Nature 551, 85 ]

➔ GRB170817 was anomalously faint compared to other sGRBs w/ known redshift
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BNS mergers are the progenitors of some short 

gamma-ray burst –the most energetic 

electromagnetic explosions in the universe

BNS mergers are the sites of heavy element 
nucleosynthesis, where most of the heavy 

elements are produced

Kilonova – the radioactive 

glow of freshly synthesized 

heavy elements

Constraints on the 

neutron star mass-radius 

relation, nuclear equation 

of state

What we learned from GW170817 Villar+ ApJL 2017

LVC PRL 2018
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GW cosmology
• CBCs are “standard sirens”: can measure

luminosity distance directly from signal waveform

• distance and redshift → measure Hubble constant 

• best constraints from “bright sirens” like GW170817
with electromagnetic counterpart for redshift

• statistical “dark sirens” approach for GWs without counterpart:
• compare with galaxy catalogs
• jointly infer cosmology with population model

16

latest results based
on GWTC-3 events:

LVK, ApJ 
arXiv:2111.03604

LVC Nature 551,85 (2017)
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https://arxiv.org/abs/2111.03634
http://www.nature.com/nature/journal/v551/n7678/full/nature24471.html
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LIGO Hanford H1

LIGO Livingston L1

Virgo V1

O3 campaign and beyond
O3 marked a phase change in GW astronomy, with public GW alerts in 
low latency and a lot of GW candidates!
• Wide range of masses 
• most events: binary black holes
• redshifts up to ~0.8
• Spins: 

• Key signatures to discriminate BH populations: shed light on 
formation mechanism 

• Some events with clear indication of a net positive Xeff

• No counterparts found in low latency
• But low mass candidates were poorly localized and/or poorly 

located on the sky



GW190425

A massive binary neutron star merger

Abbott et al. ApJ Lett. 896, L44 (2020)

• Both component masses < 3 M⦿ 

• No EM counterpart

• Total mass larger than any known BNS 

(5σ from mean of Galactic BNS)

• Initial sky map had a 90% credible region of 10,200 deg2 

at luminosity distance of 159−72
+69 Mpc

May indicate population of short period BNSs invisible to radio 

pulsar surveys

The possibility that one or both binary components are black 

holes cannot be ruled out
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GW190521

A massive binary black hole merger encroaching on the pair-
instability mass gap

Abbott et al. Phys. Rev. Lett. 125, 101102 (2020)

Abbott et al. ApJ Lett. 900, L13 (2020)

• Most massive GW binary observed to-date

• The furthest GW event ever recorded: ~ 7 Glyr distant

• First clear detection of “intermediate mass” black hole

• At least one of the progenitor black holes (85 Msun) lies in 
the pair instability supernova mass gap (between 50 and 
120)

• Evidence that GW190521 might be a 2nd generation 
merger!! 

• Also challenging for standard formation scenarios!

• Detailed reanalysis: Estellés+ , ApJ, 902, 79 (2022) 

A 2nd Generation Black Hole Merger?

Mass gap
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Beyond Binary 
Mergers

Core collapse supernovae 
• A galactic supernova is the ultimate multimessenger prize
• GW emission encodes the internal dynamics of the supernova

• Detector range beyond the galaxy is limited, depending on explosion 
mechanism, so keep your fingers crossed.
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Neutrino 
Connection
• Upper limits on the neutrino flux spatially and 

temporally coincident with public GW alerts from O3
• Super-K (ApJ 2021), IceCube (ApJ 2023), 

ANTARES (JCAP 2023), KM3Net (JCAP 2024)

• Realtime IceCube follow-up of GW public alerts

• Future possibilities in development 
• LVK RAVEN pipeline search for GraceDB 

coincidences between GW and IceCube public 
alerts

• Joint GW + neutrino sub-threshold search using 
IceCube and KM3Net

• Reranking GW candidates based on external 
neutrino coincidence

21



• Possible EM emission from two scenarios: NS crustal deformations, 
accretion from binary companion

• Interior structure of neutron star 
• Neutron star properties, e.g., 

mass, spin, ellipticity
• Nuclear equation of state
• May discover exotic states of 

matter
• Detecting deviations from 

General Relativity (speed of GWs, 
existence of other polarizations) 

• … and so on

•  CW-like signals can be also 
associated to Dark Matter

Credit: Mark Myers, 

OzGrav-Swinburne
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What can we learn from continuous waves?



Pulsars:
Source of continuous GWs
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• We have no idea how many  CW signal detections to expect in  aLIGO/AdV. 

• Guided searches:
• Some extended regions on the sky (e.g. galactic spiral arms) are 

expected to be overdense in NSs. 
• Can also choose to guide frequency or spindown ranges by EM-

observed pulsar population, or by population modelling.
23

Pulsars as Gravitars

Single detector 
1y coherent

aLIGO
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• Upper limits on 236 targets, at both once and twice the rotation frequency of the pulsar. 
Abbott+2021, “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the 
Second and Third LIGO-Virgo Observing Runs”

• Glasgow time-domain Bayesian method 
[Dupuis&Woan2005, Pitkin+2017]

• Warsaw time-domain F-statistic 
[Jaranowski-Królak-Schutz1998, Jaranowski&Królak2010]

• Rome 5n-vector method 
[Astone+2014, Mastrogiovanni+2017]

• Searches with non-GR templates can constrain 
non-standard polarisation content (scalar, 
vector modes:
Isi+2015, Isi+2017, Verma2021)

• Non-LVK searches: e.g. Nieder+2021 on Einstein@Home gamma-ray pulsars,

TARGETED: 236 known pulsars
(168 in binary systems & 161 millisecond pulsars with frequencies above 100 Hz) 

24O2+O3 HLV, arXiv:2111.13106 (2021) ApJ

https://arxiv.org/abs/2111.13106
https://doi.org/10.1103/PhysRevD.72.102002
https://arxiv.org/abs/1705.08978
https://arxiv.org/abs/gr-qc/9804014
https://arxiv.org/abs/1004.0324
https://arxiv.org/abs/1403.1484
https://arxiv.org/abs/1703.03493
https://arxiv.org/abs/1502.00333
https://arxiv.org/abs/1703.07530
https://doi.org/10.3390/universe7070235
https://doi.org/10.3847/2041-8213/abbc02


TARGETED: 236 known pulsars
(168 in binary systems & 161 millisecond pulsars with frequencies above 100 Hz) 

O2+O3 HLV, arXiv:2111.13106 (2021) ApJ

• Search at both once and twice the rotation frequency of the pulsar. 

• A new search method designed to detect the dipole radiation present in Brans-Dicke theory. 

• For 23 pulsars, resulting upper limits have surpassed EM measured spin-down limits.

• For 9 pulsars, their spin-down limits have been surpassed for the first time. 

• For Crab & Vela, our limits are factors of ~100 and ~20 more constraining than the spin-down limits, respectively. 

Credit: NASA's Goddard 
Space Flight Center 
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For the Crab pulsar, the GW upper limit is less 
than 0.009% (previously ∼0.02%) of spin-down 
limit. With an ellipticity of 7.2x10-6  (maximum 
mountain height of ~2 cm). 



• Targeted at 5 radio pulsars: 2 recycled millisecond pulsars, 1mildly recycled pulsar, and 2 
young pulsars (Crab, Vela)

• Assume a tight coupling between GW and EM signal phase evolution

• Search assuming emission at once or twice the rotational frequency

• For the first time, a constraint on the fraction of spin-down energy due to GWs emission 
has been obtained for a millisecond pulsar and constraining ellipticities < 10 -8

O1+O2+O3a HLV, ApJL 902, L21 (2020)

TARGETED: Constraints on equatorial ellipticity of millisecond pulsars 

Artist's 

impression of a 
millisecond 
pulsar

[Credit: 
European 

Space Agency]
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• Searched at once and twice the spin frequency 62 Hz

• First time reach below GW spin-down limit for this star by more than a factor 
of 2 and limit GWs to account for <14% of the spin-down energy budget. 

• No GWs but we are now 95% confident that the ellipticity is < 0.00003

O2+O3 HLV, ApJL 913, L27 (2021)

TARGETED: Energetic young pulsar PSR J0537-6910 (“The Big Glitcher”)
X-ray pulsar, largest spin-down luminosity, frequent and strong glitches, 
unusual braking index could point at pulsar being spun-down by GWs; 

LVK and NICER collaborated to look for continuous GWs. 
Use a NICER timing ephemeris (NICER — Neutron star Interior Composition Explorer)

• Inter-glitch braking index suggests that r-mode oscillations may be important to 
GW emission.  

• Search in a narrow band 86—97 Hz to deal with EOS uncertainty

• Searches exclude the possibility that PSR J0537-6910 could be a high mass 
neutron star emitting GWs due to r-modes. But could still be possible for low 
mass neutron stars.

O3 HL, ApJ 922, 71 (2021)
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NARROW-BAND: 18 known pulsars & 9 glitches

O3 HLV, arXiv:2112.10990 (2021) ApJ

• Relax the assumption that GW emission is phase-locked to EM emission, allowing the GW frequency to vary from EM 
expectation in a narrow band —— surpassed spin-down limits for 7 pulsars (2 for first time)

• Black: strain upper limits 
obtained from the search

• Red: indirect glitch excess 
energy upper limits

• “glitches” —— events where 
the star suddenly rotates faster 
than before

• Also search for long-duration (hours–months) transient GWs after pulsar glitches for 6 targets (9 glitches in O3)

28



(Vela 

Jr)

(Vela 

Jr)

• Search for 15 young supernova remnants in frequency bands within [10, 2000] Hz

• Take into consideration spin-wandering and dual-harmonic emission (3 algorithms). 

• No detections (h0,min~7.7x10-26 for G65.7+1.2 ) but constraints placed on ellipticities and r-mode oscillation amplitudes

• Ellipticity <10-6 for most of the sources; reaching below the rough theoretical upper limit for normal neutron stars . 
min~6x10-8 for G266.2-1.2/Vela Jr.

• r-mode amplitude < 10-3, reaching below the theoretical prediction level expected for the nonlinear saturation mechanisms

DIRECTED: Young supernova remnants

O3a HLV, ApJ 921, 80 (2021)

O3a HL, PRD 105, 082005 (2022)

• A deeper O3a search in band [20, 
976] Hz achieved the best
sensitivities for Cassiopeia A and 
Vela Jr., setting limits ~30% lower 
below 600 Hz. 

Cassiopeia A 
[Credit: NASA/JPL-Caltech] 
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DIRECTED: Scorpius X-1

O3 HL, arXiv:2201.10104 (2022)

• Scorpius X-1 is the most X-ray-luminous low-mass X-ray binary

• Covered broad frequency range [60, 500] Hz, accounting for spin wandering

Credit: Mark Myers, 

OzGrav-Swinburne

• A deeper search using a 
model-based technique is 
in progress
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LVK- O4: 

31

1) Observing Run #4 (O4) started on May 24, 2023.
2) The LIGO Virgo KAGRA collaborations had our 100th O4 
gravitational wave candidate a week ago on May 27th. 
(Named S240527en observed on Memorial Day). 

You can always follow along with O4 Public Alerts here: 
https://gracedb.ligo.org/superevents/public/O4/
  
--As of today, there have been 149  O4 Significant Detection 
Candidates: 149 (166 Total - 17 Retracted).
O4 Low Significance Detection Candidates: 2560 (Total)

--Our first exceptional O4 gravitational wave detection 
(GW230529) was announced on April 5, 2024 (more info 
here: https://www.ligo.org/detections/GW230529.php).

--O4a went from May 24, 2023 to Jan 16, 2024.
--The O4 break + Engineering Run 16 (ER16) was from Jan 16 
to April 12 this year.
--O4b/c started on April 12, 2024 and  will tentatively end in 
June 9, 2025.

https://gracedb.ligo.org/superevents/public/O4/?fbclid=IwZXh0bgNhZW0CMTAAAR1rU9ikLTD-lHqgSJdSjDka3_xyXrTnnSnx4GW3cNDqu3Ylorm-QwXPwi8_aem_ATJIdaVZ3nSyT41KYa4bA69rrkuJfm5QI6q8HpR4CDzWKU6IpXItXoO1dMLU51VfW9JQVTZxWEf0c5OAJQpukrOE
https://www.ligo.org/detections/GW230529.php
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Next Generation 
Observatories
• O5 will be “LIGO A+”, significant further upgrades for Virgo 

and KAGRA too.
• LIGO India is coming! [Unnikrishnan IJMPD33,2450025 

(2024)]
• Next upgrade plan “LIGO A♯” [LIGO-T2200287 / LIGO-

T2200287]

• “3rd generation” detectors enable a ~complete census of 
BNS and BBH mergers  

• Robust statistics on GRB+BNS merger association, 
and how that correlates with orientation & distance 

• BNS signals will be in band and detectable for O(100s) of 
seconds to several hours

• Advanced warning for EM follow-up (though 
localization will be rough)
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From 2G to XG
• Gain of a factor of 10 and lower frequency bound 
• Triangle configuration for Einstein Telescope.
• Two widely separated, L-shaped surface facilities in 

the US CE40 and CE20 for Cosmic Explorer
• New possibilities (null stream, new algorithms, new 

computing technology, new synergies)
• New challenges (long-waveforms, overlapping 

signals, strong foreground, correlated noise)
• XG observatories will detect thousands of signals 

every day
• Weak signals, loud mergers, 
• BNS, NSBH, BBH, SN bursts, CW, …

• Current algorithms are woefully inadequate for 
parameter inference

36
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Years after the Big Bang

• ET/CE will be a new discovery machine:
• ET/CE will explore almost the entire Universe 

listening the gravitational waves emitted by 
black hole, back to the dark ages after the Big 
Bang 

• ET/CE will be a precision measurement 
observatory:

• ET/CE will detect, with high SNR, hundreds of 
thousands coalescences of binary systems of 
Neutron Stars per year, revealing the most 
intimate structure of the nuclear matter in their 
nuclei 

Credit: M.Branchesi
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Multi-messenger Astrophysics

• At least one 40km CE →100x 
higher BNS detection rate 

• BNS redshift reach of 𝑧 ≈ 2 
• Map the progenitors of short 

gamma-ray bursts
• Measure time delays

• With at least 2 XG detectors: 
• Tens of signals localized to < 

1 deg2

• Thousands to < 10 deg2 
• Few – tens < 10 deg2 5 mins 

before merger

38
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The Science of LISA

• LISA will be the first ever mission to survey the entire Universe with Gravitational 
Waves.
• LISA will allow us: To investigate the formation of binary systems in the Milky Way; to 
detect the guaranteed signals from the verification binaries; to study the history of the 
Universe out to redshifts beyond 20, when the Universe was less than 200 million years 
old; to test gravity in the dynamical sector and strong-field regime with unprecedented 
precision; and to probe the early Universe at TeV energy scales.
• Multiband GW Astronomy with LISA and ET/CE

From: Jani, K., Shoemaker, D. & Cutler, C. (2020): Detectability of intermediate-mass 

black holes in multiband gravitational wave astronomy. Nat Astron 4, 260–265

• LISA will probe the expansion history of 
the Universe using GW sirens at high 
redshifts (WARNING: provided we can 
obtain the redshift): SOBH binaries (z < 0.2), 
EMRIs (z < 1.5), MBHBs (z < 6).

40



• LIGO-Virgo-KAGRA detectors currently taking data, uploading alerts to enable MMA

• Multiple types of searches for multiple types of signals

• Considering joint subthreshold searches for GWs coincident with high-energy neutrinos with observing
partners

• Next-generation ground-based detectors will enable a multimessenger revolution

• LISA and ET will become complementary given that the same signal can be followed by LISA and ET in 
different Hz ranges (LISA pre-warns ET).

41
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