

The role of nova systems in the ²⁶Al abundance: constraints from INTEGRAL

Arianna Vasini PhD student, University of Trieste In collaboration with F. Matteucci, E. Spitoni, G. Cescutti and M. Della Valle arianna.vasini@inaf.it

INTEGRAL Workshop 2024

Introduction

- INTEGRAL data on ²⁶Al
- Scientific motivation

Chemical Evolution of ²⁶Al

- What is Chemical Evolution
- Vasini+2022: novae as ²⁶Al producers -
- Vasini+2024: SFR tracing and bulge nova population

Conclusions

- Summary and future perspectives

Outline

Introduction

INTEGRAL ²⁶Al map

Bouchet+15

1.809 MeV map of the Milky Way decay of ²⁶AI:

26**AI**
$$\tau_{26al} = 1.035 Myr$$
 $^{26}Mg + \gamma$

Characteristics:

Distributed mainly on the Galactic plane

Not too smooth, not too clumpy

Concentrated in the direction of the bulge (bulge, something in the foreground...?)

→ Massive stars + ??

210

INTEGRAL ²⁶Al map

Bouchet+15

1.809 MeV map of the Milky Way decay of ²⁶AI:

Distributed mainly on the Galactic plane

Not too smooth, not too clumpy

Concentrated in the direction of the bulge (bulge, something in the foreground...?)

→ Massive stars + ??

Why do we care?

Nucleosynthesis: which star produces which element

 α -elements (O, Mg, Ca, Si, Ti,...) -

Fe-peak (Fe, Mn,...)

Neutron-capture elements (Eu, Ba, Y, Zr, La, Ce, Mo, Nd, Pr,...): -

Long-lived radioisotopes (232Th, 238U,...)

Lithium:

Short-lived radioisotopes (26AI, 60Fe, 244Pu,...)

Massive stars

Type la SNe

Merging neutron stars

Nove

Why do we care?

Nucleosynthesis: which star produces which element

 α -elements (O, Mg, Ca, Si, Ti,...) -

Fe-peak (Fe, Mn,...)

Neutron-capture elements (Eu, Ba, Y, Zr, La, Ce, Mo, Nd, Pr,...): -

Long-lived radioisotopes (232Th, 238U,...)

Lithium:

Short-lived radioisotopes (²⁶Al, ⁶⁰Fe, ²⁴⁴Pu,...)

Massive stars

Type la SNe

Merging neutron stars

Nove

Why do we care?

Nucleosynthesis: which star produces which element

 α -elements (O, Mg, Ca, Si, Ti,...) -

Fe-peak (Fe, Mn,...)

Neutron-capture elements (Eu, Ba, Y, Zr, La, Ce, Mo, Nd, Pr,...): -

Long-lived radioisotopes (232Th, 238U,...)

Lithium:

Short-lived radioisotopes (26AI, 60Fe, 244Pu,...)

Type la SNe

Merging neutron stars

Nove

SFR tracer

Introduction

Chemical evolution of galaxies

Main ingredients

- open/closed box
- Initial composition (primordial)
- gas flows
- SFR + IMF _____ populate the galaxy
- stellar yields _____ pollute the galaxy

Introduction

Chemical evolution of galaxies

The prescriptions are used to solve the Chemical Evolution Equation

pollution SFR

Arianna Vasini 24 Oct. 2024

$\dot{M}_{\text{gas},i}(\mathbf{r},t) = -\psi(\mathbf{r},t)X_i(\mathbf{r},t) + \dot{R}_i(\mathbf{r},t) + X_{i,A}A(\mathbf{r},t) - X_i(\mathbf{r},t)W(\mathbf{r},t) - \frac{1}{\tau_i}X_i(\mathbf{r},t)e^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)W(\mathbf{r},t) - \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},t) + \frac{1}{\tau_i}X_i(\mathbf{r},t)E^{-t/\tau_i}X_i(\mathbf{r},$ outflow radioactive infall decay

Chemical evolution of galaxies

The prescriptions are used to solve the Chemical Evolution Equation

$\dot{M}_{\text{gas},i}(\mathbf{r},t) = -\psi(\mathbf{r},t)X_i(\mathbf{r},t) + \dot{R}_i(\mathbf{r},t) + X_{i,A}A(\mathbf{r},t) - X_i(\mathbf{r},t)W(\mathbf{r},t) - \frac{1}{\tau_i}X_i(\mathbf{r},t)e^{-t/\tau_i}$ outflow radioactive infall decay

Chemical evolution of galaxies

The prescriptions are used to solve the Chemical Evolution Equation

$\dot{M}_{\text{gas},i}(\mathbf{r},t) = -\psi(\mathbf{r},t)X_i(\mathbf{r},t) + \dot{R}_i(\mathbf{r},t) + X_{i,A}A(\mathbf{r},t) - X_i(\mathbf{r},t)W(\mathbf{r},t) - \frac{1}{\tau_i}X_i(\mathbf{r},t)e^{-t/\tau_i}$ outflow radioactive infall decay

Chemical evolution of galaxies

The prescriptions are used to solve the Chemical Evolution Equation

How do we picture the galaxy?

→ 1D scenario (radial coordinate)

Arianna Vasini 24 Oct. 2024

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 1D MW Vasini, Matteucci & Spitoni 2022

How do we picture the galaxy?

→ 1D scenario (radial coordinate)

Arianna Vasini 24 Oct. 2024

How do we picture the galaxy?

→ 1D scenario (radial coordinate)

How do we picture the galaxy?

→ 1D scenario (radial coordinate)

How do we picture the galaxy?

→ 1D scenario (radial coordinate)

Approximations:

- No dependence on the azimuth
- Each ring is isolated from the others
- Homogeneous mixing within each ring

SFR

Chemical evolution of galaxies: ²⁶Al in 1D MW Vasini, Matteucci & Spitoni 2022

• Double infall (thick and thin discs)

• <u>Schmidt-Kennicutt (1998)</u> relation:

$$\psi(t) = \nu \sigma_{gas}^k$$

Arianna Vasini 24 Oct. 2024

SFR

Chemical evolution of galaxies: ²⁶Al in 1D MW Vasini, Matteucci & Spitoni 2022

• Double infall (thick and thin discs)

• <u>Schmidt-Kennicutt (1998)</u> relation:

$$\psi(t) = \nu \sigma_{gas}^k$$

Arianna Vasini 24 Oct. 2024

²⁶Al stellar producers (Stellar yields)

- Massive stars: major contribution 4 yields tested
- Type Ia SNe: minor contribution (NTY1984)
- AGBs: minor contribution (Karakas+10)
- Novae: <u>3 cases tested</u>
- Minor contributions (VMSs, binaries...): excluded

²⁶Al stellar producers (Stellar yields)

- Massive stars: major contribution 4 yields tested
- Type Ia SNe: minor contribution (NTY1984)
- AGBs: minor contribution (Karakas+10)
- Novae: <u>3 cases tested</u>
- Minor contributions (VMSs, binaries...): excluded

Massive stars

- Woosley & Weaver 1995 (Z dependent)
- Woosely & Weaver 1995 (Z_{\odot} only)
- Limongi & Chieffi 2006
- Limongi & Chieffi 2018

Χ

Nova systems

- no production
- Josè & Hernanz 1998
- Josè & Hernanz 2007

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 1D MW Vasini, Matteucci & Spitoni 2022

²⁶Al stellar producers (Stellar yields)

- Massive stars: major contribution 4 yields tested
- Type Ia SNe: minor contribution (NTY1984)
- AGBs: minor contribution (Karal
- Novae: <u>3 cases tested</u>
- Minor contributions (VMSs, bina

²⁶Al theo

²⁶Al obse

 $(\sim$

Massive	stars
•Woosley	& Weaver 1995 (Z depende $\sqrt{2}$ where 1995 (Z depende
• vvooseiy	& vveaver 1995 (\mathbb{Z}_{\odot} only) & Chieffi 2006
retical mass	& Chieffi 2018 X
VS.	stems
rved mass	iction
2 M _o)	lernanz 1998 Iernanz 2007

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 1D MW Vasini, Matteucci & Spitoni 2022

²⁶Al stellar producers (Stellar yields)

- Massive stars: major contribution 4 yields tester
- Type Ia SNe: minor contribution (NTY1984)
- AGBs: minor contribution (Karal Woosley & W
- Novae: <u>3 cases tested</u>
- Minor contributions (VMSs, bina

ne

• Woosley	$^{\prime}$ & Weaver 1995 (Z depende
•Woosely	& Weaver 1995 (Z_{\odot} only)
<u> </u>	& Chieffi 2006
eaver 1995 (Z dep)	& Chieffi 2018
+	Χ
Hernanz 2007	stems
M _☉ of ²⁶ Al	iction
contribution is	lernanz 1998
ecessary	lernanz 2007

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

Chemical Evolution model with 1D approximation

Chemical Evolution model with 1D approximation

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

→ The scenario is too simplistic for ²⁶Al

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

→ The scenario is too simplistic for ²⁶AI

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

→ The scenario is too simplistic for ²⁶AI

Chemical Evolution model with 1D approximation

Arianna Vasini 24 Oct. 2024

→ The scenario is too simplistic for ²⁶Al

Chemical Evolution model with 1D approximation

homogeneous mixing does not hold for Short Lived Radioisotopes: 2D model needed

Arianna Vasini 24 Oct. 2024

The scenario is too simplistic for ²⁶Al

How much the previous results about ²⁶Al are affected by the choice of 1D over 2D model?

Massive stars are not the only astronomical production site of ²⁶Al

Nova systems contribute too: -delay for the formation of the white dwarf -<u>delay</u> for the cooling time

Nova systems do not trace the SFR

How much the nova contribution affect the precision of the ²⁶Al SFR tracing?

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

SFR from 2D model by *Spitoni+19,+23*:

Arianna Vasini 24 Oct. 2024

eesa

Mopc

Arianna Vasini 24 Oct. 2024

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

²⁶Al producers: massive stars + nove $1.028 M_{\odot}$

²⁶Al producers: massive stars

 $0.265 M_{\odot}$

vs 2 M_{\odot} observed

theoretical ²⁶Al is too low

Arianna Vasini 24 Oct. 2024

CE of ²⁶Al

Chemical evolution of galaxies: ²⁶Al in 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

²⁶Al producers: massive stars + nove

 $1.028 M_{\odot}$

²⁶Al producers: massive stars

 $0.265 M_{\odot}$

vs 2 M_{\odot} observed

theoretical ²⁶Al is too low

Arianna Vasini 24 Oct. 2024

Arianna Vasini 24 Oct. 2024

Conclusions

Milky Way 1D (Vasini+22):

Milky Way 2D (Vasini+24):

- 1D models have limitations ——— we developed a 2D model

Arianna Vasini 24 Oct. 2024 - arianna.vasini@inaf.it

• Only by including production from novae we can reproduce the observations ——• novae are ²⁶Al sources

• novae smooth out the spiral arm pattern — P²⁶Al is not a pure SFR tracers, ⁶⁰Fe traces it better

• we cannot reproduce the observations — *increased production by bulge novae* (already observed)

