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Gamma-Ray Bursts

* Neutron Star Mergers
* Collapsars
* Magnetar Giant Flares



Short and Long Gamma-Ray Bursts

o BATSE GRB Catalog
* GRBs were split into short and
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Afterglow + Kilonova
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Rastinejad et al. 2022 Nature 612 223-227

Kilonova are thermal transients
which emit over ultraviolet, optical,
and infrared wavelengths
Photometric observations in these
bands give you some insight into the
ejecta mass, velocity distribution,
and composition

The earliest signals of interest occur
in ~10 minutes, then a few hours



Rastinejad et al. 2022 Nature 612 223-227

Afterglow + Kilonova
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Levan et al. 2024 Nature 626 737-741

JWST Spectrum of a Kilonova — GRB 230307A
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Kilonova and GRB Monitors

* All kilonovae which have been observed were identified through
their prompt GRB signal (one also through the gravitational wave

signal).
* Early observations after merger are required to properly interpret
kilonovae data

* The most likely counterpart to GWs will be gamma-ray bursts

* Both examples used here were long gamma-ray bursts, which
should not arise from neutron star mergers. Are they a different

progenitor?
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Cherenkov Telescope Array

* Ashkar et al. 2024 ApJ 964 1: Current
rate of VHE detections of GRBs is
<1/year; rough rate with the CTA is
~4/year.

* CTA could target larger localization
regions, but the best observations
and results still rely on rapid reporting

* CTA will provide a comprehensive
sample to understand the origins of
the VHE emission in GRBs

e Synchrotron Self Compton?
* External Inverse Compton?
* Both?
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https://www.ctao.org/emission-to-discovery/telescopes/
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What if a giant flare occurred outside the Milky Way?
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Magnetar Giant Flares:

X-ray Tails

e There are now ~9 MGFs

* GRB 231115A was the first rapidly
identified (S. Mereghetti, Session 6)

* However, we did not automatically

alert the community

 Swift could have recovered the X-
ray tail, as could NICER (with

technical improvements)
* ‘Smoking-gun’ signature

Counts
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Magnetar Giant Flares and heavy elements
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* Expanding cold NS matter proposed and r process site by Lattimer and
Schram 1974, Lattimer 1977

e Hot NS matter from MGFs revisited - Cehula et al. 2024 MNRAS 528 3

* Optical / ultraviolet observations within ~10 minutes could recover the
signal, and is detectable to several Mpc

* Requires very rapid alerts, automatic giant flare identification, robotic
follow-up
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Rapid Localizers

* Few GRB monitors provide rapid
(~<1 hour) localizations at
arcminute accuracy.

* INTEGRAL and Swift are 20+ years
old and nearing mission end

* Fermiis 16 years old

* Einstein Probe and SVOM are in
commissioning, and could fill
some of this gap, if they achieve
design detection rates

* What else can we do?
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InterPlanetary Network

* Geometric location determination,
using detections in multiple satellites

IPN Fermi /
INTEGRAL

* Key capability for other survey
telescopes, but cannot (alone)
provide rapid localizations for
targeted follow-up

* We are working on rapid INTEGRAL-
Fermi annuli, but its usefulness will
be limited if/when INTEGRAL ends

[THE “ TRIANGULATION" METHOD|




New and Future Missions

* Session 12
e THESEUS - Lorenzo Amati
e Status of Einstein Probe — Erik Kuulkers
e Status of SVOM - Stephane Schanne

e Session 13
e COSI -Julien Malzac

* In the US, proposing a near-universe mission next year
* True all-sky coverage with base scintillators (~20 keV - few MeV)
* Coded aperture mask over ~30% of sky (~0.5-20 keV)
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Conclusions

* GRB monitors have and will always play a crucial role in time-
domain and multimessenger astronomy

* Rapid localization can be done, but requires significant design
efforts and significant operational resources

* The field is in a transition period as the past generation of
monitors begin to end, and new facilities launch

* We need to keep this momentum into the 2030s and beyond
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