
We present the classification of variable stars from the first INTEGRAL-OMC catalog of optically variable sources (Alfonso-Garzón et al. 2012). This first version of the catalogue 
contains 5263 variable sources. For this work, we have adopted a subset of 1337 objects with calculated period and well-recognized classification in catalogs such as the 
International Variable Star Index (VSX). We adopted a method based on a Machine Learning transformer architecture to classify the OMC light curves, analyzing both the time 
series and the phase-folded light curves. This classification includes intrinsic (e.g., pulsating, eruptive) and extrinsic (e.g., eclipsing binaries, rotating stars) variable sources, and in 
the future will also include some of their subclasses, such as Algol, beta Lyr, W UMa, Cepheids, DSCT, LPVs, RR Lyrae (RRAB, RRC), RV Tauri, ACV, Ellipsoidal, Orion, T Tauri, 
Bes, and BYDracs. In this poster, we present our preliminary results of applying our algorithm to the subset described above. This methodology will be applied to the final 
INTEGRAL-OMC catalog with over 25,000 sources.
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Introduction
INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) is a European Space Agency (ESA) mission 
launched in 2002 with the purpose of observing high-energy sources such as X-ray binaries, AGN, etc. This 
mission has several instruments, among which stands out the Optical Monitoring Camera (OMC, Mas-Hesse et 
al. 2003). This optical camera monitors the emission in the V-Johnson band (500-600 nm) from the sources 
observed by the X-ray and gamma-ray instruments, but it also obtains photometric measurements of many 
other sources in the field of view. OMC provides long-term light curves of thousands of potentially variable 
sources, and this fact motivates the preparation of algorithms to automate the classification of these sources. 
An important work in which this classification was implemented was in Alfonso-Garzon et al. 2012, where a 
study was made of a first catalog of object classification among which are: These classes include intrinsic 
variable sources (e.g. pulsating, eruptive) and extrinsic (e.g. eclipsing binaries, rotating stars) with objects with 
good photometric quality and more than 300 data points each. In most of the cases, the long time baseline of 
the OMC light curves provides us with good temporal coverage and well sampled phase-folded light curves (as 
it is shown for the object IOMC 1025000045  in Fig. 1, left). However, in other cases, these objects have import 
gaps between data points, such as IOMC4030000090 (Figure 1) that generate significant challenges for their 
classification and the estimation of their period, which in this case has been calculated with the phase 
dispersion minimization technique (PDM). 

Results

When implementing the BERT architecture, 80 
% of the available data (1042 objects) was 
taken as a training set and the remaining 20 % 
was taken as a test set to validate the trained 
model. This implementation resulted in a 
classification accuracy of 94%, as reported in 
the confusion matrix in figure 3.
When validating the number of objects that 
were not successfully classify it is observed that 
the proportion of misclassified objects was 
higher the Eruptive and Rotating object cases, 
which could be linked to the low number of 
objects in the study sample compared to the 
Eclipsing a Pulsating samples.

Sample Selection
In order to generate a training data set, we have taken a sample of 
light curves (LCs) of variable stars from Alfonso-Garzon et al. (2012), 
which are representative of the future data that will compose the 
final OMC-INTEGRAL catalog of variable sources. Of the 5263 
available objects, only those that had information about their period 
have been taken into consideration in the first stage, that is a 
subsample of 1337 variable sources, including eclipsing binaries (EB), 
eruptive stars (Er), pulsating stars (P), rotating stars (R), cataclysmic 
variables (CV), X-ray binaries (XB), extragalactic sources (AGN), and 
those just classified as variable stars (vstar). However, some of the 
mentioned categories (CV, XB, AGN, and vstar) are poorly 
represented in our initial sample, and have been excluded from this 
preliminary analysis, since with just a few identified sources of those 
types is not possible to train the algorithm. In Table 1, we can see the 
total number of sources considered in this analysis. 

Methodology
Nowadays, there is a wide variety of time series classification algorithms that can be applied to the current 
study of light curves. However, transformer models have generated a revolution in what refers to the 
implementation of feature chains, especially in natural language processing (NLP), as positioned by Vaswani 
et al. (2017), generating important changes in the architectures of recurrent and convolutional networks, by 
focusing on attention mechanisms that model word dependencies in sequences, are trained to study the 
importance of each word in a sequence with respect to the others. Among the transformer-based 
architectures, we have employed BERT (Bidirectional Encoder Representations from Transformers, Ming-wei 
Chang Kenton et al. 2017.), which since its development has been used for text analysis and classification 
tasks, among other tasks. This model is based on the analysis of sentences taking into account previous and 
subsequent words and their relationship between them This characteristic and interpreting time series as 
sequential data on a time scale, allows capturing complex relationships in temporal data.
To adapt BERT for time series analysis, we preprocess the time series by converting them into a suitable 
format for BERT’s tokenization process. Instead of working with words, as in natural language processing, we 
treat each value in the time series as a sequential token. Activity funded by Agencia Estatal de Investigación (Spanish State 

Research Agency - AEI)     MICIU/AEI/10.13039/501100011033 grants  
PID2019-107061GB-C61 (INTEGRAL) and PID2020-112949GB-I00 
(Spanish Virtual Observatory). 

Conclusions
The implementation of transformer architectures, in particular the BERT architecture adapted to OMC 
light curves from INTEGRAL, have shown the ability to extract features that allowed their classification in 
classes with an accuracy of around 94 %, denoting a high effectiveness for future classification of objects 
studied by this survey. Although preliminary, this result allows us to validate the possibility of 
implementing such algorithms for the future set of OMC variable sources sources, seeking to improve 
some conditions such as the balance between the representatives of each variability type. As a next step, 
our objective is that our classification algorithm is able to distinguish between some of the variability 
subclasses, such as: Algol, Beta Lyrae, and W UMa eclipsing binaries; Cepheids, Delta Scutis, RR Lyraes, 
Miras, Long Period Variables, Semi-regular variables between the pulsating stars; Ellipsoidal, BY Draconis, 
and Alpha2 Canum Venaticorum variables, which are classical rotating stars; and some periodic Orion 
variables, and T Tauris, which are eruptive stars whose periodic variability is also due to rotation.  
Additionally, there are other transformer architectures tested such as TST (TiSeries Transformer), 
Transformer XL, Reformer, or Longformer, which may allow us to find the approach that most efficiently 
captures the characteristics of the light curves under study.
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Table 1: List of objects taken from 
Alfonso-Garzon et al. 2012, which we will 
take into account for the implementation of 
the automatic classification algorithm

This step can involve discretizing continuous time series values or applying 
embeddings to represent each time point in the sequence. This process 
helps to highlight characteristics in our light curves despite the presence of 
different gaps between each of the objects, allowing the time series 
converted into tokenized time series to be classified by the BERT 
pre-trained model. Additionally, we apply positional encodings to ensure 
that the temporal order of the data is preserved, allowing BERT to capture 
dependencies both forward and backward in time. This enables the model 
to identify complex patterns in the time series despite irregular intervals or 
gaps between data points and classify them. This process is iterative and 
can be seen in Figure 2. This modification allows transformer-based models 
to handle temporal data, applying the same principle of contextual 
attention to capture temporal relationships. After tokenization, each value 
in the light curve can be associated with a vector that represents the 
relationship with other points in the series, allowing the algorithm to 
detect the main patterns in each of the selected classes, creating attention 
layers that capture both localized patterns and global trends across the 
time series. Considering that the amounts of data are unbalanced, a loss 
function called CrossEntropyLoss has been applied. This function measures 
the difference between the true labels of the time series and the 
predictions made by the model and validates that the model pays more 
attention to the less represented classes, which is important in unbalanced 
datasets.

Figure 2: Description of the 
BERT model’s feature capture 
process. This diagram 
illustrates the multi-layer 
structure involving 
self-attention and feed-forward 
networks. This graph is taken 
from Ozturk et al. 2017.

Figure 3: Confusion matrix with the results of the classification 
performed with the transformer model implementing the BERT 
architecture, for each of the classes under study.
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These data have been used as a first input for 
the preparation of algorithms that perform 
the automatic classification of these objects. 
Regarding the training algorithm for the 
classification of this type of data (Time 
Series), we will test the ML transformers 
architecture Ashish Vaswani et al. 2017, 
which promises simpler training and better 
scalability (Mario Morvan et al. 2022). The 
technique will be compared with others, such 
as the use of deep learning algorithms (such 
as DistClassiPy by Siddharth Chainiet al. 2024) 
to test its efficiency. Once the best approach 
for LC classification is found, the developed 
methodology will be applied to all OMC LCs 
and the results will be included in a future 
final OMC catalogue. The implementation of 
these objects will be implemented with 
phase-folded objects, which requires that 
they have the defined period, as well as their 
normalized curves, to highlight the shapes 
that characterize each of the classes under 
study.

Figure 1. Top. Unfolded light curve of the variable objects IOMC 
1025000045 (left)  IOMC 4030000090 (right). Bottom. Phase-folded light 
curve of the same objects. Adapted from Alfonso-Garzon et al. 2012.


