

The Compton Spectrometer and Imager

Julien Malzac (Lead of COSI Galactic Group) IRAP

INTEGRAL workshop 2024 October 21-25, 2024

□ COSI is:

- a NASA Small Explorer satellite with a planned launch in 2027
- a Compton telescope for observing gamma-rays in the 0.2-5 MeV energy range
- Optimized for studies of nuclear and annihilation emission lines across the Milky Way Galaxy
- It is the combination of two capabilities that makes COSI unique
 - Uses germanium detectors cooled to cryogenic temperatures to provide excellent energy resolution
 - Instantaneous field of view is >25%-sky and covers the whole sky every day

Key Science Goals

Why use a Compton telescope to study the MeV bandpass?

 Use iterative deconvolution techniques to produce images (point source example)

COSI's germanium detectors

COSI-balloon instrument with 12 germanium detectors
 Satellite will have 16 detectors (4 stacks of 4)

Double-sided strip detectors give 3D Compton interaction positions

COSI payload design and instrument concept

Anticoincidence subsystem (ACS)

- Bismuth germinate (BGO) scintillator "shields"
 - Vetoing escaping events
 - Reducing external background
 - 50 ms light curves at 80 keV 2 MeV (for GRB alerts)
 - Light curves at >2 MeV (for monitoring background)

Germanium detector array

- 16 germanium detectors in a cryostat
- 0.2 5 MeV
- High-resolution spectroscopy
- Compton imaging
- Compton polarimetry

Background and Transient Observer (BTO) Student Collaboration instrument

- NaI scintillators
- 30 keV 2 MeV light curves and energy spectra

COSI mission timeline and observatory parameters

Original Proposal Opportunity	2019 Astrophysics Small Explorer (SMEX) with \$145M cost cap (FY20\$), excluding launch	Solar Array (Northrop Grumman)	Payload (UCB) 156 cm
Phase A start	March 2020		Spacecraft (NG)
Phase B start	January 2022		
Phase C start	April 2024	∢ −	
Planned Launch	August 2027	108 cm COSI Mass, Power, and Data	
Launch Vehicle	Space X Falcon 9	Mass (372 kg Not to Exceed)	350 kg (Maximum Expected Value, MEV)
Orbit	530 km altitude <2 deg inclination	Power (732 W generated by Solar Array w/ battery storage)	609 W MEV (including battery recharge and other inefficiencies)
	(for low background)	Data (through Malindi Ground Station, provided by ASI)	7.7 Gb/day S-band
Prime Mission Duration	2 years (extensions are anticipated)	Data (through Tracking and Data Relay Satellite System, TDRSS)	4 kbps S-band GRB Data: 500 kb per alert

INTEGRAL workshop 2024 – October 21-25, 2024

COSI

A Gamma-ray Space Explorer

The COSI collaboration

University of California, Berkeley PI: John Tomsick University of California, San Diego Deputy PI: Steven Boggs Naval Research Laboratory Goddard Space Flight Center Space Dynamics Laboratory Northrop Grumman Italian Space Agency (ASI) German Aerospace Center (DLR) French National Space Agency (CNES)

Institutions of Co-Investigators and Collaborators

- Clemson University
- Louisiana State University
- Los Alamos National Laboratory
- Lawrence Berkeley National Laboratory
- IRAP, France
- INAF, Italy
- Kavli IPMU and Nagoya University, Japan
- JMU/Würzburg and JGU/Mainz, Germany

- NTHU, Taiwan
- University of Hertfordshire, UK
- Centre for Space Research, North-West University, South Africa
- Deutsches Elektronen Synchrotron (DESY), Germany
- LAPTh-CNRS, France
- Yale University
- Michigan Technical University
- Washington University, St. Louis

- Marshall Space Flight Center
- Boston University
- IAA-CSIC, Spain
- Stanford University

COSI science modes

□ Survey mode

- North/South zenith offset alternating every 12 hours
- Combined with large field of view gives daily all-sky coverage

□ Constant Zenith Angle (CZA) mode

 Targets of Opportunity for up to 15 days, commanded within 2 days

INTEGRAL workshop 2024 – October 21-25, 2024

Goal A: Uncover the origin of Galactic positrons

- □ COSI traces positrons by measuring the 511 keV e-e+ annihilation line
- □ Current questions:
 - What is producing the ~5x10⁴³ e⁺/s required to explain the 511 keV signal?
 - •What is the reason for the strong excess coming from the Galactic bulge?

Positron Production Rates (x10⁴² e⁺/s)

Siegert 17 and Siegert 23: "The Positron Puzzle"

Source	Galaxy	Bulge	Disk
²⁶ Al+ ⁴⁴ Ti	5.6±0.3	0.57±0.03	4.9±0.3
Observed	49±15	18.0 ± 0.2	31±15
% explained by ²⁶ Al+ ⁴⁴ Ti	11%±3%	3.2%±0.3%	16%±6%

INTEGRAL/SPI maps of the 511 keV emission

Is the 511 keV Galactic bulge excess:

- Truly diffuse?
- Made up of individual sources?
- How many sources or components?

Candidate Positron Sources

Type of Source	Source
	²⁶ Al from stellar winds
Nucleosynthesis	²⁶ Al & ⁴⁴ Ti from CCSNe
products	⁵⁶ Ni/ ⁵⁶ Co from Type Ia SNe
	¹³ N, ¹⁸ F, ²² Na from novae
	Low-mass X-ray binaries
	Microquasars
	Sgr A*
Individual	Active stars
	Pulsar winds
	Gamma-ray bursts
	Neutron star mergers
	Annihilating MeV DM
Dark matter	Decaying heavy DM
	Primordial black holes

□ 511 keV imaging of the Galaxy with COSI

- Compare to observed distributions
- Compare to theoretical distributions
- Look for individual sources

Contributions

are

highly uncertain

Galactic Longitude [deg]

Goal B: Reveal Galactic element formation

Shockwave

Compact

remnant

NS/BH

SN II

COSI investigates element creation related to massive stars

Stellar-interior nucleosynthesis

Stellar-explosion nucleosynthesis in supernovae (SN)

Element formation

Isotope	Half-life	Energies (MeV)
⁵⁶ Co	77 days	0.847, 1.238
⁴⁴ Ti	60 years	1.157
26 A	0.7 Myr	1.809
⁶⁰ Fe	2.6 Myr	1.173, 1.333

²⁶Al: mapping element formation from massive stars over the last few Myrs

vs.

⁴⁴Ti: observing the most recent supernova explosions in the Galaxy (below: spectral measurements constrain supernova dynamics)

- How do massive stars make elements? (all isotopes)
- What happens when stars explode? (especially ⁴⁴Ti and ⁵⁶Co)

Orange bars show existing measurements by INTEGRAL

COSI will measure the polarization of 0.2-0.5 MeV emission from at least 3 AGN and at least 3 Galactic BHs to constrain geometries and emission processes

Goal D: Probe the Physics of Multimessenger Events

Short gamma-ray burst (GRB) f_{0} f_{0}

UCB MOC/SDOC

NSN TDRSS Ground

General Coordinates Network

- COSI will rapidly (<1 hr) report the positions of GRBs from merging neutron stars to allow for follow-up by other observatories
- For the one previously detected (GW170817), the gamma-ray signal arrived 1.7 seconds after the gravitational wave signal, and COSI's detections will help test possible theories for this delay (Collapse to a black hole? Shock formation? Other?)

For emission line goals

For polarization and multimessenger goals

Characteristic	Requirement
Sky Coverage	>25%-sky instantaneous FOV100%-sky each day
Energy Resolution* (FWHM)	 <1.2% @ 0.511 MeV <0.8% at 1.157 MeV (44Ti)
Narrow Line Sensitivity (2 yr, 3σ, point source)	[photons cm ⁻² s ⁻¹] • 1.2x10 ⁻⁵ @ 0.511 MeV • 3.0x10 ⁻⁶ @ ²⁶ Al, ⁶⁰ Fe, and ⁴⁴ Ti
Angular Resolution (FWHM)	 <4.1° @ 0.511 MeV <2.1° @ 1.8 MeV (²⁶Al)

*Notes on energy resolution:

- For fully reconstructed Compton events (average of 2.5 interactions)
- 1.157 MeV requirement is <0.8% FWHM; capability estimate ~0.4-0.5%

Characteristic	Requirement
Polarization	 >1.4x10⁻¹⁰ erg/cm²/s (0.2-0.5 MeV) to reach <50% MDP for NGC 4151 (3rd brightest AGN)
	 Locations to <2.5° (90% confidence error radius)
GRB alerts	 Arrival times to an absolute accuracy of <100 ms
	 Reporting in <1 hr

Hardware: Engineering models and testing

- EM (and some FM) hardware being built and tested at:
 - UCB/SSL
 - NRL
 - SDL
 - LBNL
 - GSFC
 - Northrop Grumman

EM bottom shield (~40cmx40cm)

EM HVPS

Mission status and how you can get involved

- □ Recent past and near future
 - Completed Preliminary Design Review (PDR) in February 2024
 - Launch vehicle selected (SpaceX Falcon 9) in July 2024
 - Next: Critical Design Review (CDR) coming up in Nov/Dec 2024
- □ How you can get involved
 - Yearly public "data challenges" (<u>github.com/cositools/cosi-data-challenge-2</u>)

cosi.ssl.berkeley.edu

