Searching for redshifted 2.2 MeV neutron-capture lines from accreting neutron stars: theoretical X-ray luminosity requirements and INTEGRAL/SPI observations

Lorenzo Ducci<sup>1</sup>, Andrea Santangelo<sup>1</sup>, Sergey Tsygankov<sup>2</sup>, Alexander Mushtukov<sup>3</sup>, Carlo Ferrigno<sup>4</sup>

<sup>1</sup>Institut für Astronomie & Astrophysik, Tübingen
 <sup>2</sup>Department of Physics and Astronomy, University of Turku
 <sup>3</sup> Astrophysics, Department of Physics, University of Oxford
 <sup>4</sup> ISDC Data Center for Astrophysics, Versoix

23 October 2024



Searching for redshifted 2.2 MeV neutron-capture lines from accreting neutron stars: theoretical X-ray luminosity requirements and INTEGRAL/SPI observations

Lorenzo Ducci<sup>1</sup>, Andrea cantangelo<sup>4</sup>, Sergey Tsygankov<sup>2</sup>, Alexander Maskukov<sup>4</sup>, Carlo Faurgno<sup>4</sup>

> <sup>2</sup>Dei Indreit of Physics and Astronomy, University of Turku Astrophysics, Department of Physics, University of Oxford <sup>4</sup> ISDC Data Genter for Astrophysics, Versoix

> > 23 October 2024



- Kinetic energy of matter falling onto a NS is  $\sim$  100 MeV/nucl.: ions can produce nuclear reactions;  $\gamma rays$  are emitted by the star. (Schwartzman 1970).
- Neutron capture by a proton, n(p, γ)D, with γ = 2.223 MeV, is observable in accreting NSs (Reina, Treves, Tarenghi 1974; Brecher & Burrows 1980; Bildsten et al. 1992, 1993).

- Kinetic energy of matter falling onto a NS is  $\sim$  100 MeV/nucl.: ions can produce nuclear reactions;  $\gamma rays$  are emitted by the star. (Schwartzman 1970).
- Neutron capture by a proton, n(p, γ)D, with γ = 2.223 MeV, is observable in accreting NSs (Reina, Treves, Tarenghi 1974; Brecher & Burrows 1980; Bildsten et al. 1992, 1993).

# Path to $\gamma-ray$ production



energy of 200 MeV nucleon -1

4 / 11

# Path to $\gamma-ray$ production



energy of 200 MeV nucleon 1

4 / 11

- Photons emitted with an intrinsic energy  $E_0$  in the atmosphere of a NS of radius R and mass M experience a gravitational redshift to E.
- Gravitational redshift  $E/E_0$  gives directly the stellar compactness:

$$\frac{R_{\rm NS}}{M_{\rm NS}} = \frac{2G}{[1 - (E/E_0)^2]c^2}$$

 $\Rightarrow$  independent method to constrain the EoS.

#### Line intensity

 $\bullet$  number of 2.2 MeV photons escaping the NS atmosphere per one atom of accreted helium  $\hfill \sim \hfill \end{scalar}$ 



•  $E_{
m i}=GMm_{
m p}/Rpprox 0.22m_{
m p}c^2$ : kinetic energy of a baryon entering the NS atmosphere

$$\begin{split} F_{\rm n,\,2.2MeV} &\sim 1.2\times 10^{-6} \textrm{ph cm}^{-2} \textrm{s}^{-1} \left(\frac{Q}{10^{-2}}\right) \left(\frac{\textrm{Y}}{0.25}\right) \left(\frac{162\textrm{MeV}}{E_{\rm i}}\right) \\ &\times \left(\frac{F_{\rm X}}{3\times 10^{-7}\textrm{erg cm}^{-2}\textrm{s}^{-1}}\right) \,. \end{split}$$

(Bildsten et al. 1993)

#### Observations

Sco X-1: upper-limit:  $2.5 \times 10^{-5}$  ph cm<sup>-2</sup> s<sup>-1</sup> (COMPTEL; McConnell+1997)

#### Line intensity

 $\bullet$  number of 2.2 MeV photons escaping the NS atmosphere per one atom of accreted helium  $\hfill \sim \hfill \end{scalar}$ 



 $1 \bullet E_{
m i} = GMm_{
m p}/R pprox 0.22m_{
m p}c^2$ : kinetic energy of a baryon entering the NS atmosphere

$$\begin{array}{lll} F_{\rm n,\,2.2 MeV} & \sim & 1.2 \times 10^{-6} \textrm{ph cm}^{-2} \textrm{s}^{-1} \left( \frac{Q}{10^{-2}} \right) \left( \frac{Y}{0.25} \right) \left( \frac{162 \textrm{MeV}}{E_{\rm i}} \right) \\ & & \times \left( \frac{F_{\rm X}}{3 \times 10^{-7} \textrm{erg cm}^{-2} \textrm{s}^{-1}} \right) \; . \end{array}$$

(Bildsten et al. 1993)

#### Observations:

Sco X-1: upper-limit: 
$$2.5 \times 10^{-5}$$
 ph cm<sup>-2</sup> s<sup>-1</sup> (COMPTEL; McConnell+1997)

#### Relativistic effects on emission lines of NSs



(Boggs & Smith 2006; Çaliskan et al. 2009).

#### Relativistic effects on emission lines of NSs



Slow rotators are best suited for searching the 2.2 MeV line (Boggs & Smith 2006; Çaliskan et al. 2009).

- Efficiency of 2.2 MeV photon production per one <sup>4</sup>He accreted, decreases as E<sub>i</sub> becomes smaller;
- $Q \approx 0.04 \exp(-300/E_{i,MeV}^{1.1})$  (Ducci+2024)
- at high  $M_{\rm acc}$ , radiative force decelerates the accretion flow:  $E_{\rm kin}$  is reduced;
- at  $L_{\rm crit} \approx 10^{37} \, {\rm erg/s} \ (B \approx 10^{12} \, {\rm G})$ , the flow is completely decelerated  $(E_{\rm kin} = 0)$ ;

• at 
$$L_{\rm x} < L_{\rm crit}$$
:  $v \approx v_{\rm ff} \sqrt{1 - rac{L_{\rm x}}{L_{\rm crit}}}$ 

- Efficiency of 2.2 MeV photon production per one <sup>4</sup>He accreted, decreases as E<sub>i</sub> becomes smaller;
- $Q \approx 0.04 \exp(-300/E_{i,MeV}^{1.1})$  (Ducci+2024)
- at high M<sub>acc</sub>, radiative force decelerates the accretion flow: E<sub>kin</sub> is reduced;
- at  $L_{\rm crit} \approx 10^{37} \, {\rm erg/s} \ (B \approx 10^{12} \, {\rm G})$ , the flow is completely decelerated  $(E_{\rm kin} = 0)$ ;

• at 
$$L_{\rm x} < L_{\rm crit}$$
:  $v \approx v_{\rm ff} \sqrt{1 - \frac{L_{\rm x}}{L_{\rm crit}}}$ 

- Efficiency of 2.2 MeV photon production per one <sup>4</sup>He accreted, decreases as E<sub>i</sub> becomes smaller;
- $Q \approx 0.04 \exp(-300/E_{i,MeV}^{1.1})$  (Ducci+2024)
- at high M<sub>acc</sub>, radiative force decelerates the accretion flow: E<sub>kin</sub> is reduced;
- at  $L_{\rm crit} \approx 10^{37} \, {\rm erg/s} \ (B \approx 10^{12} \, {\rm G})$ , the flow is completely decelerated  $(E_{\rm kin} = 0)$ ;

• at 
$$L_{\rm x} < L_{\rm crit}$$
:  $v \approx v_{\rm ff} \sqrt{1 - \frac{L_{\rm x}}{L_{\rm crit}}}$ 



- Efficiency of 2.2 MeV photon production per one <sup>4</sup>He accreted, decreases as E<sub>i</sub> becomes smaller;
- $Q \approx 0.04 \exp(-300/E_{i,MeV}^{1.1})$  (Ducci+2024)
- at high M
  <sub>acc</sub>, radiative force decelerates the accretion flow: E<sub>kin</sub> is reduced;
- at  $L_{\rm crit} \approx 10^{37} \, {\rm erg/s} \ (B \approx 10^{12} \, {\rm G})$ , the flow is completely decelerated  $(E_{\rm kin} = 0)$ ;

• at 
$$L_{\rm x} < L_{\rm crit}$$
:  $v \approx v_{\rm ff} \sqrt{1 - \frac{L_{\rm x}}{L_{\rm crit}}}$ 





Fig. 1. Expected luminosity of the 2.2 MeV line,  $L_{22MeV}$ , as a function of the total accretion luminosity L of an XRP. Both axes are scaled by the critical accretion luminosity  $L_{crit}$ . At low mass accretion rates and luminosity, the flux in the 2.2 MeV line is proportional to the total accretion luminosity. At high mass accretion rates, however, the radiative force decelerates the accretion flow above the NS surface, which results in a sharp drop in luminosity in the 2.2 MeV line.

# SPI upper-limits vs expectations

| Source name | net exposure | L <sub>x</sub>    | $3\sigma$ u.l. 2.2 MeV line       |     |     |     |     |
|-------------|--------------|-------------------|-----------------------------------|-----|-----|-----|-----|
|             | (ks)         | $(erg s^{-1})$    | $10^{-4}$ ph cm $^{-2}$ s $^{-1}$ |     |     |     |     |
|             |              |                   | FWHM:                             | 10  | 20  | 40  | 100 |
|             |              |                   | (keV)                             |     |     |     |     |
| A 0535+26   | 1631         | $3\times 10^{36}$ |                                   | 7.5 | 9.5 | 11  | 16  |
| GX 304-1    | 381          | $3	imes 10^{36}$  |                                   | 18  | 15  | 22  | 36  |
| Vela X-1    | 5345         | $3	imes 10^{36}$  |                                   | 2.4 | 3.0 | 3.8 | 7.2 |
| X Persei    | 3050         | $6	imes 10^{34}$  |                                   | 4.4 | 5.2 | 8.2 | 9.8 |
| Sco X-1     | 4495         | $\sim 10^{38}$    |                                   | 2.8 | 3.6 | 5.3 | 9.6 |



data analysed with: SPIDAI: https://sigma2.irap.omp.eu/integral/spidai

#### 'MeV gap' and future MeV missions



- COSI (~ 2027; see talk by Julien Malzac on Thursday);
- COSI will achieve a  $3\sigma$  line point source sensitivity of  $2 \times 10^{-6}$  ph cm<sup>-2</sup> s<sup>-1</sup> in 1 Ms;
- concept missions: e-ASTROGAM, MASS, MeVGRO, ...

#### Flux concentrating telescopes

- Smaller detector sizes  $\rightarrow$  lower instrumental background;
- a viable option: γ-ray optics that employ the Laue lenses: Bragg diffraction from arrays of crystals (e.g., Virgilli+2022a);
- mission concepts ASTENA (Virgilli+2022b); FIONA (IHEP)

$$E \propto \frac{F}{dr}$$

where:

- F: focal length;
- r: crystal distance from axis;
- d: spacing of the crystal lattice planes.

Drawbacks:

- Technological challenges (production of crystals, mounting, alignment, ...);
- strongly energy dependent: high sensitivity on a limited pass-band.
- → possible solution: tunable Laue lens (Lund 2021): change F and orientation of the crystals.

