Gamma-ray Lines in the INTEGRAL Era

INTEGRAL Workshop 2024

Mark Leising Clemson University

Radioactivity plays a key role ...

in the understanding of the synthesis of the elements – clearly newly created isotopes.

Not only through gamma-ray observations, but also in early solar system, and in grains condensed from stellar outflows.

Donald D. Clayton 1935 -- 2024

γ-ray lines from radioactive nuclei

- Radioactive nuclei are excellent diagnostics of the burning conditions in nearly inaccessible regions
- Decay rate independent of temperature, density, etc.
- Relevant transitions are practically unique
- Nuclei must reach γ-ray thin regions (see and count the new nuclei)

 Some are main source of stable daughter (⁴⁴Ti,⁵⁶Ni); some just tracers of nucleosynthesis (²⁶Al, ⁶⁰Fe)

γ-ray lines from radioactive nuclei

Isotope lifetimes

- Long-lived isotopes (greater than interval between events) → 'diffuse' emission.
- Short-lived isotopes → clarify nuclear processing (and dynamics) of single events.

пср	ECP,ECu,	LC	
Si26	Si27	Si28	
2.234 S 0+	5/2+	0+	
EC	EC	92.23	
Al25	Al26 7 4E+5 v	Al27	2
5/2+	5+ *	5/2+	
EC	EC	100	β-
Mg24	Mg25	Mg26	
0+	5/2+	0+	
78.99	10.00	11.01	β-
N973	N974	Na25	

 $^{25}Mg + p \rightarrow ^{26}Al + \gamma$

26**A**

1809 keV

Massive star winds Core-collapse SNe* Classical novae* AGB stars*

Alive in early Solar System, and *found in presolar grains

1.04 My

26**A**

- Predicted γ-line emitter from supernovae based on general grounds (Arnett 1977, Ramaty & Lingenfelter 1977)
- Discovered by HEAO 3 Ge spectrometer (Mahoney et al. 1982, 1984)

$$4.8 \pm 1.0 \times 10^{-4} \ cm^{-2} \ s^{-1} \ rad^{-1}$$

$$\rightarrow 3M_{\odot}$$
 in ISM

"more than expected from supernovae ... likely ... galactic novae"

Circa 2002

- How smooth is the actual 26Al distribution?
- Are the maps dominated by whole-disk emission, or mainly relatively local sources?
- What is the ²⁶Al yield from individual sources?
- What are the contributions of classical novae, AGB stars?

INTEGRAL/SPI ²⁶Al Observations

Cygnus OB Association: Knödlseder et al. 2004

OB associations

Population synthesis code matched to observed stellar components, predicting radioactive and energy content. Voss et al. 2010, 2012

Theoretical studies:

Nuclear rates/nucleosynthesis (Battino et al. 2023)

Population Synthesis – SNe do yield patchy distribution (Siegert et al. 2023) Chemical Evolution – SNe insufficient; novae required (Vasini et al. 2024)

SPI 15 years

2.04e+07 8.13e+07 1.84e+08 3.27e+08 5.12e+08 7.37e+08 1.00e+09 1.31e+09 1.66e+09

Figure 1. Exposure sky map of the fully coded field of view in Galactic coordinates (the number at the color bar in units of seconds) for the data selected from 15 yr SPI observations for our ⁶⁶Fe and ²⁶Al study (INTEGRAL orbits 43–1950).

Figure 5. Spectral intensities (black) obtained from the fit to an exponential disk model with $R_0 = 7$ and $z_0 = 0.8$ kpc. The fitted total model, Equation (4), is shown in red.

1805-1813 keV

Wang et al. 2020

- Predicted by Clayton 1971, Nature
- HEAO 3 and SMM upper limits
 near some theoretical estimates
- Diehl et al. 1997 set COMPTEL upper limit at 44% of its ²⁶Al flux.
- Also AGB stars, possibly SN Ia

Circa 2002 :

- Is there ⁶⁰Fe in the ISM?
- How is it distributed?
- A bulge component from SN la?
- Can we measure it in a single object?

Only upper limits, some below theoretical expectations, until RHESSI (marginal) detection [Smith, D. M. 2004].

INTEGRAL SPI (Wang et al. 2007) Flux (60 Co lines) = 4.4 10⁻⁵ cm⁻² s⁻¹ --> M_{ism}(60 Fe)= 2.2 M₀

⁶⁰Fe in ocean crusts, cosmic rays, lunar samples

Wallner et al. 2015, 2021

Early reports of its existence, not confirmed (Trappitsch et al. 2018)

Wang et al. 2020

Figure 5. Spectral intensities (black) obtained from the fit to an exponential disk model with $R_0 = 7$ and $z_0 = 0.8$ kpc. The fitted total model, Equation (4), is shown in red.

Different morphologies could point to different sources?

⁶⁰Fe relative to ²⁶Al

Mass production ratio (SPI only*): P(60)/P(26) = 0.25±0.09

n.b. other ²⁶Al sources (novae, AGB)

 * ~Cancel uncertainties due to angular distribution, etc.

Background

- Suggested as γ-ray target by Clayton et al. 1969
- Source of natural ⁴⁴Ca
 - Requires a few 10-4 M_{\odot} per century now.
 - Typical cc-SN yields are 0.5 10-4 ${\rm M}_{\odot}$
- Upper limits from HEAO 3 and SMM
- Inferred in SN 1987A from late power and ionization/excitation

Woosley & Weaver 1995

44**T**i

D ~ 3.4 kpc Age = 350y

Cas A

Fig. 1. Sum of the background-subtracted spectra of observation periods 34 and 211. Typical error bars are shown Iyudin et al. 1994

lyudin et al. 1997

Circa 2002 – 44Ti

- Where are all the (younger, inner galaxy) ⁴⁴Ti remnants?
- Can we confirm SN 1987A yield directly?
- What does ⁴⁴Ti show about SN kinematics?
- Are there rare events producing much of the cosmic ⁴⁴Ca abundance?

⁴⁴Ti -- Cas A, IBIS

FIG. 3.- IBIS/ISGRI spectrum of Cas A and the best-fit model as descril

SPI – Cas A ⁴⁴Ti

Martin et al. 2008 NAR

Flux consistent with IBIS Narrow lines (~400 km/s, central ejecta) Hint for redshift? (~500 km/s)

NuSTAR Cas A

$$F_{68}$$
=1.84 x 10⁻⁵ cm⁻² s⁻¹

Image: state state

Greffenstette et al. 2017

$$M_{44} = 1.5 \times 10^{-4} M_{\odot}$$

SN 1987A IBIS/ISGRI

 $F_{68+78} \approx (1.7 \pm 0.4) \times 10^{-5} \text{ photons cm}^{-2} \text{ s}^{-1}$ $M_{44} \approx (3.5 \pm 0.8) \times 10^{-4} M_{\odot}$

Grebenev et al. 2012

```
NuSTAR SN 1987A
```


Also, electron capture K-alpha X-ray fluxes appear consistent

Where are the other ⁴⁴Ti SNR?

IBIS -

Renaud et al. 2004, following many others

Re: Cas A

standard rates/yields ⁴⁴Ca abundance

See Wang & Burrows 2024

Classical Nova Gamma Rays

Clayton & Hoyle 1974 Clayton 1981

Hernanz et al.

....

Upper limits from HEAO-C1, SMM, CGRO

¹³ N	511 keV	10 m
¹⁸ F	511 keV	110 m
⁷ Be	478 keV	53 d
²² Na	1275 keV	2.6 y
²⁶ AI	1809 keV	0.7 My

Circa 2002:

- Why don't we see them?
- When will a nova be detected?

... and now

Electron-positron annihilation (briefly)

Measurements through early 1980's found varying 511 keV line fluxes, suggesting a compact source (< light years in extent.)

Circa 2002: Compton Observatory OSSE

Disk emission: known radioactivity, pulsar winds, black holes (disks & jets)?, cosmic ray interactions

- What is the source(s) of bulge positrons?
- What is the actual disk extent/flux?
- What are the details of the bulge morphology?
- Can we detect individual source(s)?
- What are the annihilation conditions?

Bulge emission:

- astrophysical sources fall
- short;
- light dark matter particle annihilations?
- Central BH outburst(s)?

Milne et al. 2001

SPI spectrum

Jean et al. 2005

Positron source energy constraint

with caveats ...

Early SPI maps

511 keV line map derived from 5 years of INTEGRAL/SPI data (from Weidenspointner et al., 2008a).

Limits on many point sources (Knoedlseder et al. 2005)

Positron propagation?

Maybe, e.g., bulge positrons originate in disk (Prantzos 2006)

Alexis et al. 2014 disk positrons

~1 kpc spread

Geometric Model fits

Line data fit ~equally well with thin or thick disk, requiring different disk annihilation rates.

60-70% of disk from 26Al, 44Ti

25-30% of disk from 26Al, 44Ti

Future Prospects

- Improving analyses of full INTEGRAL data sets (keep not only data, but mass models, etc. available)
- Compton Spectrometer and Imager (COSI) 2027
- eAstrogam et al.

Tomsick et al. 2023

Two Year Simulated COSI Line maps

Summary:

- Many of our questions are being answered (especially due to INTEGRAL's long success)
 line widths, shapes, total masses
- Many remain
 - different source contributions
 - missing supernovae, novae
- New ones
 - Fast 26Al