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ABSTRACT

Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations
in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of
the different components of the power spectra provides a strong argument against the common practice of data
detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the
white and red noise models built into the widely used wavelet code of Torrence & Compo cannot, in most cases,
adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both
effects suggest that several reports of periodic phenomena should be re-examined. The Torrence & Compo code
nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power
spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the
default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into
account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm
that the power peaks that we detected have a very low probability of being caused by noise.
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1. MOTIVATION

Following the early detection of an individual case by Foullon
et al. (2004)1, Auchère et al. (2014) presented evidence that
coronal active region loops frequently undergo episodes of
periodic pulsations with periods of several hours and lasting
several days. This statistical study was based on 13 years of quasi-
continuous observations at a cadence of 12 min in the 19.5 nm
channel of the Solar and Heliospheric Observatory (SOHO;
Domingo et al. 1995) Extreme-ultraviolet Imaging Telescope
(EIT; Delaboudinière et al. 1995). Recently, Froment et al. (2015)
published a detailed analysis of three of these pulsation events
observed simultaneously in the six coronal passbands of the Solar
Dynamics Observatory (SDO; Pesnell et al. 2012) Atmospheric
Imaging Assembly (AIA; Lemen et al. 2012). Using a
combination of the time-lag analysis method of Viall & Klimchuk
(2012) and the differential emission measure diagnostics devel-
oped by Guennou et al. (2012a, 2012b, 2013), Froment et al.
argued that the observed pulsations are the signatures of
incomplete evaporation–condensation cycles similar to those
arising in numerical simulations of highly stratified heating of
coronal loops (Lionello et al. 2013, 2016; Mikić et al. 2013;
Winebarger et al. 2014).

Our detections add to an already vast bibliography indicating
that periodic phenomena in general seem ubiquitous in the solar
corona. In fact, they have been reported to occur in most coronal
structures: bright points (Ugarte-Urra et al. 2004; Tian
et al. 2008), loops (Aschwanden et al. 1999; Nakariakov
et al. 1999; Schrijver et al. 2002), prominences (Pouget
et al. 2006; Bocchialini et al. 2011; Zhang et al. 2012), polar
plumes (Deforest & Gurman 1998; Ofman et al. 1999), flares
(Inglis et al. 2008; Nakariakov & Melnikov 2009; Dolla
et al. 2012), open and closed field large-scale structures (Telloni
et al. 2013), etc. The physical processes involved are diverse and
the interest in their study is manifold. For example, whether found

to be sufficient (McIntosh et al. 2011) or insufficient (Tomczyk
et al. 2007) to compensate for the coronal losses, the energy
carried by Alfvén waves is at the heart of the long-standing
coronal heating debate, and their detection is thus critical. Also,
coronal seismology techniques use the characteristics of wave and
oscillatory phenomena to derive the properties of the ambient
plasma and magnetic field (Nakariakov & Stepanov 2007; De
Moortel & Nakariakov 2012).
However, recent papers have questioned the validity of several

accounts of quasi-periodic pulsations (QPPs) in solar flares
(Gruber et al. 2011; Inglis et al. 2015; Ireland et al. 2015). These
authors point out that, in many cases, the fundamental power-law
dependence of the power spectra of coronal time series has not
been recognized, resulting in erroneous confidence levels. After
the re-analysis of 19 time series, Inglis et al. (2015) concluded that
coherent oscillatory power is necessary to explain the observed
Fourier spectra in only one case. Beyond the specific case of
QPPs, their results cast doubt on a number of previously
published reports and suggest that the prevalence of oscillatory
phenomena in the corona may be artificial.
In this context, even though we properly accounted for the

power-law nature of the coronal power spectra in our previous
works, we decided to critically re-evaluate the statistical
significance of the events presented by Froment et al. (2015).
Indeed, several sometimes subtle effects can cause false
positives in Fourier or wavelet analyses. For example,
Appendix A of Auchère et al. (2014) describes how the
shadow cast on the detector by the mesh grid holding the focal
filters in SOHO/EIT (Defise 1999; Auchère et al. 2011)
produces spurious frequencies in the range of those detected
in coronal loops. This effect could not be found in identical
processing of AIA images, which is explained by the much
smaller amplitude of the mesh grid pattern in this instrument. In
the present paper, before re-interpreting our previous detec-
tions, we present possible sources of false positives in the
methods of spectral (Fourier and wavelet) analysis: Section 2
describes the effect of time-series detrending on the power
spectra, Section 3 discusses the choice of noise model, and
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1 Even though these authors attribute this event to a filament, our re-analysis
indicates that the locations of significant Fourier power correspond to coronal
arcades.
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Section 4 treats confidence levels in wavelet spectra. As an
example, one of the periodic pulsation events studied by
Froment et al. (2015) is then re-analyzed in Section 5 in the
light of these considerations. Our conclusions and recommen-
dations for Fourier and wavelet analysis of coronal time series
are summarized in Section 6.

2. DETRENDING

Detrending is often applied to time series before analysis of
their frequency content in order to filter out the low frequencies
and thus enhance the periodic signals potentially present in the
original data (e.g., Foullon et al. 2004, 2009; Ugarte-Urra
et al. 2004; Inglis et al. 2008; Tian et al. 2008; Nakariakov
et al. 2010; Dolla et al. 2012). However, several authors (Cenko
et al. 2010; Iwakiri et al. 2010; Gruber et al. 2011) have shown
that detrending, combined with improper accounting for the
frequency dependence of the power spectrum, can lead to
overestimating the claimed significance levels or even to false
detections. Our analysis confirms and generalizes these results.
We demonstrate that detrending not only can but generally does
lead to false detections in Fourier or wavelet analyses, although it
produces visually convincing filtered versions of the time series.

Detrending is achieved by removing a smooth version of itself
from the original time series so(t), which is commonly obtained
with high-pass filtering.2 Some authors compute the detrended
time series sd(t) by subtracting the smooth estimate from the
original data (e.g., Ugarte-Urra et al. 2004; Inglis et al. 2008;
Nakariakov et al. 2010; Dolla et al. 2012)
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where so(t) ∗ f(t) represents the smoothed data obtained by
convolution of so(t) with the filter kernel f(t). Other authors
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which is identical to Equation (1) for the relative variations of the
signal. These two methods are thus equivalent and have the same
effect on the Fourier or wavelet spectra. If the variations of the
signal are not small compared to its average, the second method
modifies the power spectra more profoundly than described
below, which renders their proper interpretation impossible.
Using the convolution theorem on Equation (1), we obtain

the power spectrum of the detrended time series
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where capital letters are used to denote the Fourier transforms.
The most commonly used high-pass filter is a running boxcar
of width Δt, in which case the power spectrum becomes3
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which is the power spectrum of the original time series
multiplied by a filtering function that attenuates the low
frequencies while preserving the high frequencies (the black
curve in Figure 1).

Figure 1. Distortion of the power spectra of time series after detrending with a running boxcar of width Δt. Left: the original time series have power-law-like spectra
(dashed lines for power-law exponents s varying from 0 to −5). The abscissas are expressed in units of the cut-off frequency 1/Δt of the filter and each curve is
normalized to its average over the plotting range, i.e., to the variance s0

2 of the corresponding time series. For s > −4, the power spectra of the detrended time series
(solid lines) have a maximum around the cut-off frequency, which results from the suppression of the low-end of the power laws by the high-pass filter (black curve,
s = 0). Right: the same as on the left but with a linear axis of power. The power spectra of the detrended series have dominant power in a limited band of frequencies,
which can result in a convincing but false impression of periodicity in the original signal (see Figures 2 and 3).

2 Other methods can be used—like approximation by polynomials—but in all
cases the power spectrum will be affected.

3 Similar expressions could be derived for other high-pass filters, resulting in
similar distortions of the power spectrum.
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As recently emphasized by Inglis et al. (2015) and Ireland
et al. (2015), the mean Fourier power spectra of extreme-
ultraviolet emission from active region cores, loop footpoints,
and the quiet Sun follow a power-law-like behavior. This
property was already noted by Auchère et al. (2014) for all
types of on-disk structures and for most of the time series that
they analyzed, and Gupta (2014) also reports power-law
spectra off-disk in polar plumes. A power law is actually what
is expected from line of sight superimposition of many
exponentially decaying emission pulses (Ireland et al. 2015;
Aschwanden et al. 2016), which is consistent with the idea that
the corona is heated by many small scale impulsive events.
This indicates that a power law is the most likely spectral shape
for coronal time series. From Equation (5), the expected power
spectra of detrended time series can thus be described by
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Ψ(ν) is represented in Figure 1 for integer values of the
exponent s from −1 to −5, which covers the range of observed
slopes reported by Inglis et al. (2015). In addition, the shape of
the filter itself is given by the s = 0 case. For  -s 4, the
maximum of Ψ(ν) is at ν = 0. For −1 > s > −4, which is the
case for the majority of the reported power laws for coronal
time series, we determined numerically that the position of the
maximum can be approximated (to within better than 1%) by

D
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2
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The maximum is located near the cut-off frequency 1/Δt of the
high-pass filter, and exactly at the cut-off for s = −2. The right
panel of Figure 1, which uses a linear axis for the power,
clearly illustrates the formation of a peak of dominant
frequencies around the cut-off by the filtering out of the power
laws below 1/Δt. The corresponding detrended time series are
thus strongly chromatic, which can be incorrectly interpreted as
periodicity in the original data.

In order to demonstrate the effect in practice, using an
independently derived version of the algorithm described by
Timmer & Koenig (1995), we simulated a random time series
of N = 512 data points whose power spectral distribution
(PSD) is a power law of exponent −2. The original time series
is the gray curve in the top left panel of Figure 2 and its
Δt = 30 time steps wide running boxcar detrended version is in
magenta. Both curves are normalized to their respective
standard deviations σ0. The results of the spectral analysis
(wavelet and Fourier) of the detrended and original series are
represented in the middle and bottom rows, respectively.

A periodicity is clearly visible in the detrended time series even
though the original data are completely random. This periodicity
is real, as shown by the narrow peak of power in the log–linear
fast Fourier transform power spectrum of the central panel. A
narrow band of power is also visible at the same frequencies in the
Morlet wavelet spectrum (left panel) computed with the code of
Torrence & Compo (1998, hereafter TC98).

Fourier (gray line) and wavelet (blue contours and lines)
white noise 95% confidence levels could be used to argue in
favor of the significance of the peak. However, as revealed by
the log–log representation of the right panel, this periodicity is
only due to the high-pass filtering of a power-law-like
spectrum. The Fourier (gray histogram) and time-averaged

wavelet (black curve) power spectra follow the theoretical
curve given by Equation (5) (in cyan, i.e., the s = −2 curve of
Figure 1). As expected, the peak of power is located around the
cut-off frequency 1/Δt. At higher frequencies, the power
spectrum is quasi-unaffected and resembles that of the original
series (lower right panel). As we will see in the next section,
not recognizing the power-law nature of the original spectrum
will lead to incorrect conclusions regarding the significance of
the observed peak of power.

3. BACKGROUND NOISE MODELS

The determination of confidence levels requires an appro-
priate model of the background power, i.e., an estimate of the
expected value σ(ν) of the power, and of its probability
distribution, at each frequency in the absence of oscillatory
phenomena.4 This is a fundamental step in wavelet or Fourier
analysis.5 If we assume white noise, the expected power σ is
constant (dark blue lines in the two right-hand panels of the
middle row of Figure 2) and equal to 1 since, following TC98,
we normalized the Fourier and wavelet spectra by N/σ0

2, which
gives a measure of power relative to white noise. For a
normally distributed random variable, the Fourier power at
each frequency being distributed as sc 22

2 (TC98, Gabriel
et al. 2002)6, the probability that the power is greater than m
times the mean σ for at least one of any of the N/2 frequencies
is given by - - -e1 1 m N 2( ) (Scargle 1982; Gabriel
et al. 2002), from which we obtain that the peaks of power
above s s s= - - =m log 1 0.95 8.511 256( ) have only a 5%
chance of occurring from white noise (95% global confidence
levels, the gray lines in the two right-most panels).
Equivalently, we derived empirically (see Section 4) the 95%

global confidence levels above which white noise power only
has a 5% probability for at least one of any of the points of the
wavelet and time-averaged wavelet spectra (light blue contours
and curves). The less stringent local confidence levels built-in
the TC98 code (medium blue contours and curves) give the
95% probability that greater power at each frequency and/or
time is not due to white noise. Although perfectly rigorous for
white noise, these confidence levels lead to erroneous
conclusions because this background model is obviously
inadequate for either the original or the detrended time series.
The red noise model of Torrence & Compo (1998) (red

curves) is not a good approximation of the expected spectrum
of the detrended series either. It is based on the lag-1 auto-
regressive (AR(1), or Markov) process:

a= +-x x z , 8n n n1 ( )

where α is the lag-1 autocorrelation, x0 = 0, and zn is taken
from Gaussian white noise. The normalized expected Fourier

4 As mentioned by Gabriel et al. (2002), the commonly adopted notation σ for
the expected power is not strictly correct, and it is not to be confused with the
variance σ0

2 of the time series, even though the two are equal for white noise.
5 It is worth noting that randomization methods (O’Shea et al. 2001) do not
replace the assumption of a model of noise, since they are in fact equivalent to
comparing to white noise.
6 The notation sc dd

2 , as used by TC98, means that the probability
distribution function (PDF) of the power p at the frequency ν is

s sf p d d d;( ) , where f(x; d) is the PDF of the chi-square distribution of
degree d. This distribution of power has mean σ.
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power spectrum of the resulting time series is given by:
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where δt is the sampling interval. Since xn is a normally
distributed random variable, its power is distributed as white
noise of mean σ(ν) in each sufficiently narrow frequency band
centered on ν. Thus, the Fourier and wavelet spectra are
distributed as s n c 22

2( ) at every frequency and time7 (see
TC98 and references therein) and the corresponding confidence
levels are simply those derived for white noise multiplied by
σ(ν).

As was the case for white noise, using the red noise AR(1)
model to study the power spectrum of the detrended time series
of Figure 2 naturally yields misleading results because the
model cannot represent the expected spectrum. The detrended
time series has a lag-1 autocorrelation coefficient of 0.83. The
corresponding mean power (red curves in the right panels of
the middle row) underestimates the expected value (cyan
curves) around the cut-off 1/Δt and largely overestimates it at
lower frequencies. Consequently, while the Fourier power is
everywhere below the 95% confidence level (gray curves), both
the wavelet and the time-averaged wavelet spectra exceed the
TC98 95% local confidence levels (orange contours and
curves).
Conversely, the AR(1) model can adequately represent the

mean power of the non-detrended time series (red curves in the
bottom right panels) since this latter has a lag-1 autocorrelation
coefficient of 0.995. Indeed, for α ≈ 1 and small ν, using a

Figure 2. Spurious periodicity produced by detrending a random time series. Top left: the original simulated data (in gray) have a mean power spectrum that is a
power law of exponent −2 (histogram of the bottom right panel). Its detrended version (with a running boxcar of width Δt = 30) is plotted in magenta. The wavelet
and Fourier analyses of the detrended and original data are shown in the middle and bottom rows respectively. The clear Δt periodicity visible in the detrended time
series manifests itself as a narrow band of excess power in the wavelet spectrum and as a strong peak near the cut-off frequency 1/Δt in the Fourier and time-averaged
wavelet spectra (gray histograms and black curves). However, this shape is simply what is expected from the high-pass filtering of a power-law spectrum (cyan curve,
i.e., orange curves of Figure 1), as best revealed by a log–log representation (right panels). The COI, i.e., the region of the wavelet spectrum affected by the zero
padding of the time series, is shown in lighter shades of gray.

7 This expression is valid for complex wavelets such as the Morlet and Paul
wavelets used in the present paper.
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second order Taylor expansion of the cosine function,
Equation (9) can be approximated by

s n
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»

-
t

1

2
, 10

2
( )
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which is a power law of exponent −2, i.e., by construction the
expected PSD of the original data.

As a result of the appropriateness of the model, none of the
frequency bins of the Fourier and time-averaged wavelet
spectra are above the associated 95% global confidence levels
(gray and yellow curves, respectively). However, at least one
bin of the time-averaged wavelet spectrum is above the TC98
95% local confidence level (orange curves), but this should not
be taken as evidence for significant oscillatory power, for it is
in fact likely to occur by chance: while the probability for the
noise power at each frequency to be above that level is only
5%, the probability for any of the 256 frequencies to be above
is much higher (see Section 4). Likewise, several orange
contours (TC98 95% local confidence levels) appear by chance
on the wavelet spectrum (bottom left panel). This effect was
mentioned in TC98 (see their Figure 4) and the authors caution
against over-interpretation on their website.8 On the other hand,
no points of the wavelet or time-averaged spectra are above the
95% global confidence levels derived in Section 4 (yellow
contours and curves).

The AR(1) red noise model is nonetheless strongly limited in
that, as shown by Equation (10), it can only satisfactorily
approximate power-law-like spectra of exponent −2, while the
values reported in the literature for coronal time series span at
least the −1.72 to −4.95 range (Inglis et al. 2015; Ireland
et al. 2015). It is thus likely that the AR(1) model is in most
cases not pertinent for solar data.

Figure 3 is similar to Figure 2 for a random time series
having an expected power-law spectrum of exponent −3. The
detrended time series (in magenta) presents strong oscillations,
for the same reasons as described above. Its spectral analysis
(middle row) thus presents characteristics similar to those
illustrated in Figure 2 for the s = −2 series. The false
detections appear to be even more significant because in this
case the AR(1) noise model (with α = 0.92) is not a valid
approximation of the PSD anywhere. The non-detrended data
have a lag-1 autocorrelation coefficient of 0.998. The mean
power spectrum given by the AR(1) model is thus close to a
power law of exponent −2. It intersects the true PSD at mid-
frequencies, and the corresponding 95% confidence levels
erroneously lead to the conclusion that there is significant
excess power at low frequencies.

If we ignore how the time series was built, the log–log
representation of its PSD (bottom right panel) would naturally
suggest choosing a power law of the variable exponent as a
noise model. The thus fitted expected power is given by the
dark green line. The Fourier spectrum is not above the
corresponding 95% global confidence level (gray line) any-
where. Wavelet confidence levels can in fact be computed with
the TC98 code for any given mean power spectrum (see the
Appendix for practical details). Some points of the wavelet and
time-averaged wavelet spectra are above the resulting
local 95% confidence levels (medium green contours and
curves) for the same reason as described above: these levels
account only for the local number of degrees of freedom of the

spectra, and thus power will randomly surpass them for 5% of
the frequencies and/or times even if the noise model is
appropriate. In the next section, we derive global confidence
levels that account for this effect.

4. CONFIDENCE LEVELS

4.1. Fourier Confidence Levels

At each frequency ν, the Fourier or (wavelet) power
spectrum of a random time series is distributed as (Gabriel
et al. 2002, TC98)9

s n c
1

2
112

2( ) ( )

around the mean power σ(ν). The probability for one point of a
spectrum to have a power greater than m times the mean σ is
thus P(m) = e−m, and the associated confidence level as defined
by TC98 is 1 − P. For example, points above the TC98 95%
confidence level have a probability P = 0.05 (5%) of having a
power greater than s n s n= - =m log 0.05 2.99( ) ( ) ( ).
However, in most practical situations, the probability of

having power greater than these confidence levels in at least
one of the bins is close to one. The reason is that the confidence
levels above which peaks of power have a given probability to
occur by chance depend on the number of points in the
spectrum. For a random time series of N points, 1 − P(m) is the
probability for each of the N/2 frequency bins of the Fourier
spectrum to have a power lower than mσ(ν). Since the bins are
independent, (1 − P(m))N/2 is the probability for the power to
be lower than mσ(ν) in all bins, and the probability that at least
one bin has a power greater than mσ(ν) is thus

= - - = - - -P m P m e1 1 1 1 . 12g
N m N2 2( ) ( ( )) ( ) ( )

We refer to Pg as the global probability (and corresponding
confidence levels) over the whole spectrum as opposed to the
local probability associated with individual bins.10 For
example, for N = 512, the global probability to have at least
one bin of the Fourier spectrum above the 95% local
confidence level is 1− (1–0.05)256 = 0.999998. Conversely,
using Equation (12), one can properly derive the value of m
corresponding to the 95% global confidence level,
i.e., = - - =m log 1 0.95 8.511 256( ) .

4.2. Wavelet Confidence Levels

4.2.1. How Significant are Peaks of Wavelet Power?

The derivation of global confidence levels for a wavelet
spectrum is more complex because its bins are not statistically
independent. Without providing a quantitative test, Torrence &
Compo suggest that the significance of a peak of power be
judged by comparing its duration with the decorrelation time,
which is given by the width of the cone of influence (COI) at
the corresponding frequency. This approach is followed by,
e.g., Jess et al. (2008). But there is a non-zero probability for

8 http://paos.colorado.edu/research/wavelets/faq.html.

9 This expression is valid for complex wavelets. The 1/2 factor would be
removed for real wavelets (see TC98).
10 The term global refers to the taking into account of the total number of
degrees of freedom in the spectrum and is not to be confused with the global
wavelet spectrum term used in TC98. To avoid confusion, in this paper we
always use time-averaged spectrum to denote what TC98 also call the global
wavelet spectrum.
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two or more random peaks to be close enough together to form
structures longer than the decorrelation time. Figure 4 shows an
example in the wavelet spectrum of a 1024 data-point-long
Gaussian white noise time series. The structure visible around
the frequency 12/Nδt remains above the 95% local confidence
level (dark blue contours) for about 4 times the decorrelation
time. As shown below, the probability of occurrence of such a
structure at a given frequency (or scale) can be estimated using
the binomial distribution.

TC98 showed that the time-averaged wavelet power is
distributed as s n c dd

2( ) , with d being the number of degrees of
freedom at each scale s

⎛
⎝⎜

⎞
⎠⎟

d
g

= +d
n t

s
2 1 , 13a

2

( )

where na is the total number of points N minus half the number
of those in the COI, and γ is an empirically derived
decorrelation factor equal to 2.32 for the Morlet wavelet. At

each scale, the wavelet spectrum thus behaves as l = d/2
statistically independent c2

2 distributed bins. Defining a success
as a peak of power surpassing the 95% local confidence level,
which has a probability p = 0.05, the probability of obtaining
exactly k successes in l trials is given by

=
-

- -P k l p
l

k l k
p p; , 1 . 14b

k l k( ) !
!( )!

( ) ( )

In practice, l and k do not have to be integers; in this case the
Gamma function has to be used instead of factorials. We have
l = 4.5 at the scale of the long structure of Figure 4 and k = 1.8
given that it lasts for 40% of the total duration. The probability
to obtain the same number of bins above the 95% local
confidence level by chance is thus 2 × 10−2. Since the
binomial distribution accounts for all possible arrangements of
k successes in n trials, this value is in fact an upper-limit for the
probability of occurrence of that particular structure, which
may thus be considered unlikely. This structure corresponds to

Figure 3. Similar to Figure 2 for a random time series whose mean power spectrum is a power law of exponent −3. The AR(1) model (red curves) is not a valid
approximation of the spectrum of the detrended (middle row) or of the original (bottom row) time series, yielding erroneous confidence levels and conclusions.
Confidence levels based on a power-law model of the expected spectrum (dark green curves) allow us to correctly conclude the absence of significant oscillatory
power.
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a peak of power of the time-averaged spectrum (the black curve
in the right panel) that lies above the 95% local confidence
level (dark blue curve). Knowing that the time-averaged
spectrum is distributed as s n c dd

2( ) (TC98), the probability
associated with this maximum of power is 10−3, which is also
unlikely.

In fact, it is intuitive that there must be a correlation between
the probability associated with a power level in the time-
averaged spectrum and the probability to have the observed
number of bins above the local 95% confidence level at the
corresponding scale. Figure 5 shows, for 100,000 wavelet
spectra of Gaussian white noise time series, the joint
probability density of these two quantities. The spread around
the diagonal comes from the binomial approximation and from
the fact that at a given scale, several temporal power profiles
can produce the same time-averaged power while having a
different number of bins above the 95% local confidence level.
The observed correlation demonstrates that estimating the
probability of occurrence of a given coherent structure simply
amounts to estimating the probability associated with the
corresponding time-averaged power. In order to do this, one
must nonetheless take into account the total number of degrees
of freedom in the spectrum. In the example of Figure 4, while
the time-averaged wavelet power exceeds the 95% local
confidence level, the 95% global Fourier confidence level
given by Equation (12) (gray line) correctly rejects the
corresponding peaks in the Fourier spectrum (gray histogram).
Likewise, it is possible to define robust global confidence
levels for both wavelet and time-averaged wavelet spectra by
generalizing the principles described 4.1 for Fourier spectra.

4.2.2. Global Wavelet Confidence Levels

Equation (12), which was derived for Fourier spectra, cannot
be used for wavelet spectra by simply replacing N/2 with the

total number of bins, for these are not statistically independent.
Nonetheless, as shown below, the relation between Pg(m) and
P(m) can in practice be approximated by a modified version of

Figure 4. Example of coherent structure in the Morlet wavelet power spectrum of a Gaussian white noise time series. Around the frequency 12/Nδt, the power
exceeds the 95% local confidence level during about 500 δt (dark blue contours). The possibility that such features can occur randomly indicates that comparison of
the width of a peak of power with the decorrelation time is not a sufficient test to conclude its significance. The global confidence levels defined in Section 4 on the
other hand allow us to correctly conclude the absence of significant peaks in both the Fourier, wavelet, and time-averaged wavelet spectra.

Figure 5. Joint probability density between the probability associated with a
power level in a time-averaged spectrum and the probability of having the
observed number of bins above the local 95% confidence level at the
corresponding scale. The white circle indicates the corresponding values for the
long structure of Figure 4. The correlation shows that estimating the probability
of occurrence of such a structure amounts to estimating the probability
associated with the corresponding peak in the time-averaged spectrum.
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Equation (12)

= - -P m P m1 1 15g
a n( ) ( ( ) ) ( )

where a and n are empirically derived coefficients. By analogy
with Equation (12), n is expected to be proportional to the
number of bins in the spectrum, but limited to those outside the
COI since the local confidence levels corresponding to P(m)
are not relevant for the bins inside the COI. Indeed, for a zero-
padded time series, the mean power inside the COI decreases as
- t-e1 2t2 s , where τs is the e-folding time (equal to s2 for

the Morlet wavelet) and t is the time from either the beginning
or end of the spectrum. Thus, bins inside the COI have a
reduced probability of being above the chosen confidence level
compared to those outside. Finally, the total number of bins
outside the COI should be normalized to the resolution in scale
because the probability of having at least one bin above a given
confidence level should be independent of the resolution.

In order to determine a and n, we constructed 100,000
Gaussian white noise time series11 along with their associated
Morlet wavelet power spectra, from which we estimated the
probability Pg(m) to have at least one bin (outside the COI)
above the power threshold mσ(ν) and corresponding to the
local probability P(m). We repeated this procedure for different
numbers of data points N (powers of 2 from 26 to 214) and scale
resolutions δj (from 1/2 to 1/28). The wavelet spectra were all
computed using zero padding over J + 1 scales = ds s 2j

j j
0 with

d d=J N t s jlog2 0( ) and the minimum resolvable scale
s0 = 2δt (see TC98 for details on the meaning of these
parameters). The total number of bins in each spectrum is N( J
+ 1).

The results are shown in Figure 6. The histogram-style
curves represent the Monte-Carlo-derived relations between
Pg(m) and P(m) for δj = 1/8 and varying values of N. The
curves saturate at one, and this for smaller P(m) as N is large,
reflecting the fact that the probability to have power greater
than the threshold in at least one bin increases quickly with the
number of bins. Almost identical curves are obtained for values
of δj smaller than 1/8, but they differ somewhat for larger
values. TC98 mention that 1/2 is the largest δj that still gives
adequate sampling in scale for the Morlet wavelet. Our tests
indicate that, at least from the point of view of the global
confidence levels, δj = 1/8 should be the maximum used.

We fitted the dj 1 8 curves with Equation (15) and found
that they can be described by the following parameterization of
the fitted a and n (dashed curves in Figure 6)

d=a N j0.810 16out
0.011( ) ( )

d=n N j0.491 , 17out
0.926( ) ( )

where Nout is the number of bins outside the COI. The exponent
0.926 reflects the slightly slower increase of n with Noutδj
compared to the expected linear relationship. The coefficient a
varies slowly with Noutδj, which corresponds to the fact that the
curves are parallel to each other. Furthermore it is close to 1,
which implies that it only introduces small perturbations to
P(m).

Inverting Equation (15) and using the parameterization given
by Equations (16) and (17), one can now compute the local

probability (or confidence level) that should be used to achieve
a chosen global probability (or confidence level)

= - -P m P m1 1 . 18g
n a1 1( ) ( ( ( )) ) ( )

For example, assuming the N = 1024 data points time series of
Figure 4, we have a = 0.894 and n = 1581 with the wavelet
parameters used in this paper. The 95% global confidence level
(Pg(m) = 0.05) thus corresponds to =P m( )

- - = ´ -1 1 0.05 9 101 1581 1 0.894 6( ( ) ) , i.e., to a 99.999%
local confidence level. This value can in turn be used as input
to the TC98 code (see the Appendix for practical details), and
the structure visible in the bottom left panel of Figure 4 is now
correctly rejected (no light blue contours).

4.2.3. Global Time-averaged Confidence Levels

Using the same Monte-Carlo simulations, we derived global
confidence levels for time-averaged Morlet wavelet spectra. As
shown by TC98, time-averaging over the c2

2 distributed points
of the wavelet spectrum results in the averaged power being
distributed as s n c dd

2( ) , with d being the number of degrees of
freedom at each scale given by Equation (13). For a given local
confidence level, the corresponding threshold m is thus a
function of scale. But since all of the bins of the time-averaged
spectrum have the same probability P(m(s)) to be above m(s)σ
(ν) by chance, the global probability for at least one bin to be
above m(s)σ(ν) should again follow a relation described by
Equation (15), and we now expect n to be proportional to
Soutδj, the number of scales for which at least one bin is outside
the COI, normalized by the resolution.
Figure 7 is the equivalent of Figure 6 for time-averaged

spectra. As previously, the curves are all similar for dj 1 8.
The Monte-Carlo results can be described by the following

Figure 6. Monte-Carlo-derived probabilities Pg(m) that at least one bin of a
Morlet wavelet spectrum has power greater than m times the mean power σ(ν),
as a function of the probability P(m) for each bin to have a power greater than
mσ(ν), for several lengths N of the input random time series. The dashed curves
correspond to the parameterization given by Equations (15)–(17).

11 Note that since, as shown by Equation (11), the power is always distributed
as c2

2 around the mean power σ(ν), the Monte-Carlo results would be identical
for, e.g., AR(1) or power-law noise.
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parameterization of a and n

= + ´ d-a 0.805 0.45 2 19S jout ( )
d=n S j1.136 . 20out

1.2( ) ( )

Instead of the expected linear relationship, we had to raise
Soutδj to the power 1.2 in order to reproduce the fitted values of
n. The dependence of a with Soutδj is not intuitive but it is
always close to 1.

As before, we can now use the above expressions to compute
for a time-averaged spectrum the local confidence level that
should be used to achieve a chosen global confidence level. For
Figure 4, we have a = 0.885 and n = 691.7. The 95% global
confidence level (Pg(m) = 0.05) thus corresponds to

= - - = ´ -P m 1 1 0.05 2 101 691.7 1 0.885 5( ) ( ( ) ) , i.e., to a
99.998% local confidence level. This value can in turn be used
as input to the TC98 code.

We also ran Monte-Carlo simulations for the Paul wavelet
and found results similar to those presented above for the
Morlet wavelet: the coefficients n are close to being
proportional to the number of bins outside the COI and the
coefficients a are close to 1. We can use parameterizations of
the same form as before, i.e., for the wavelet spectrum

d=a N j0.817 21out
0.011( ) ( )

d=n N j0.320 , 22out
0.926( ) ( )

and for the time-averaged spectrum

= + ´ d-a 1.02 0.70 1.42 23S jout ( )
d= +n S j1.0 0.56 . 24out

1.2( ) ( )
As a final note, it is important to realize that a peak of power

may be above the global confidence level in the time-averaged
wavelet spectrum while the power may be below the global
confidence level at all times in the wavelet spectrum at the
corresponding frequency. By analogy with the Fourier case, we
derived global confidence levels to test individual peaks, not

the probabilities of occurrence of extended structures. As
shown in Section 4.2.1, this latter is simply given by the
probability associated with the power in the time-averaged
spectrum. Thus, while surpassing the global confidence level
confirms the significance of a peak of power in the wavelet
spectrum, the converse is not true. Before discarding as
insignificant a peak in the wavelet spectrum that is below the
global confidence level, one should check whether or not a
corresponding peak is present and above the global confidence
level in the time-averaged wavelet spectrum.

5. RE-ANALYSIS OF AIA TIME SERIES

We present a re-analysis of the 33.5 nm SDO/AIA time
series corresponding to one of the events studied by Froment
et al. (2015). Figure 8 shows the middle image of the one
minute cadence, 9202 frame-long sequence starting 2012 June
3 at 18:00 UT and ending 2012 June 10 at 04:29 UT, remapped
to the heliographic coordinates system used to compensate the
solar differential rotation (see Auchère et al. 2005 for details on
the projection method). The white contour delimits the region
automatically detected in the outer part of NOAA AR 11499 by
the algorithm described in Auchère et al. (2014). It clearly
delineates a bundle of loops whose length can estimated from
magnetic field extrapolations to be about 280Mm. The black
box defines the area manually selected by Froment et al. (2015)
for detailed analysis, which encloses the region where the
maximum of power is observed. The dashed box delineates a
nearby reference region of identical surface area chosen outside
the white contour or excess power. The time series of
intensities averaged over these boxes, normalized to their

Figure 7. The same as Figure 6 for time-averaged wavelet spectra. The dashed
curves correspond to the parameterization given by Equations (15), (19)
and (20).

Figure 8. Middle frame of the 154 hr long sequence SDO/AIA 33.5 nm
sequence remapped to heliographic coordinates. Froment et al. (2015) detected
excess Fourier power in the loop-shaped white contour and performed a
detailed multi-wavelength analysis on the time series of intensities averaged
over the black box. Section 5 describes the Fourier and wavelet re-analysis of
this time series (see Figure 9). The dashed box delineates a nearby reference
region (Figure 10).
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standard deviation σ0, are shown in the top left panels of
Figures 9 and 10, respectively. Data gaps, defined as the
intervals during which no data exist within 30 s of an integer
number of minutes since the beginning, represent 0.7% of the
sequence and are represented by the vertical gray bars, the
height of which also represents the range of variation of
the intensity. The gaps have been filled with linear

interpolations between the nearest data points. Since we used
a one minute-cadence sample of the original 12 s cadence AIA
data, the remainder of the time series was considered evenly
spaced and thus kept as-is. The TC98 code zero-pads the times-
series up to the next-higher power of two (214 in this case),
while for Fourier analysis we apodized them using the Hann
window.

Figure 9. Fourier and wavelet analysis of the intensity time series averaged over the black box of Figure 8. The bottom left panel shows the whitened wavelet
spectrum (see Section 5). The peak of Fourier power labeled h1 at 30 μHz (9 hr) has a 1.7 × 10−8 probability of occurrence. The corresponding Fourier component is
over-plotted on the time series in magenta. The equivalent peak in the time-averaged spectrum is also well above the global confidence level (yellow curve). It
corresponds to the elongated structure visible at the same frequency in the wavelet spectrum. Such a long-lived structure has a 7 × 10−11 probability of occurrence at
this frequency. The vertical streak of wavelet power above 2 × 102 μHz around 118 hr is caused by the two small short-lived impulsive events visible in the time
series.

Figure 10. Same as Figure 9 for the reference region of Figure 8 (dashed box). Taking into account all the degrees of freedom, no significant power surpasses the
global confidence levels in the Fourier, time-averaged wavelet or wavelet spectra. To facilitate comparison, the power spectra use the same scaling.
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In Figures 9 and 10, the right-hand panel gives the Fourier
(histogram-style) and time-averaged wavelet (black solid line)
spectra on a log–log scale. As discussed in Section 2, the power
spectra of solar coronal time series generally exhibit a power-
law dependence with frequency caused by a background of
stochastic fluctuations. However, while the power spectra of
Figures 9 and 10 exhibit an overall power-law behavior, they
depart significantly from a true power law, as do many of the
spectra studied by Auchère et al. (2014).

Several effects indeed commonly produce complex spectral
shapes. If different regimes of turbulence are present in the
observed plasma, one can expect the spectrum to have one or
several breaks due to the different power-law exponents in
different frequency ranges, like in the solar wind (e.g., Bruno &
Carbone 2013). In addition, the superimposition on the
background emission of one or a few sporadic transients also
creates humps in the spectrum. In practice, the envelope of the
power spectrum of many types of pulses can be modeled by a
kappa function

⎛
⎝⎜

⎞
⎠⎟n

n
kr

= +r

-k+

K 1 , 25
2

2

1
2

( ) ( )

ρ being the width of the PSD and κ defining the extent of its
high-frequency wing. We thus chose to fit the Fourier spectrum
with a background model of the form

s n n n= + +rA BK C. 26s( ) ( ) ( )

The first term represents the power-law dependence caused
by the background of stochastic fluctuations present in most
solar coronal time series. The second term is a kappa function
that accounts for the possible presence of pulses in the time
series. Finally, the constant C corresponds to the high-
frequency white noise component expected from photon
statistics.

In the right-hand panels of Figures 9 and 10, the solid red
curve shows the resulting models of mean power σ(ν), and the
three dashed red curves correspond to the individual compo-
nents. The two power spectra could be satisfactorily fitted with
the same model, the reduced chi-squares being 1.7 and 1.8,
respectively. In both cases, the white noise components
dominate above 2 μHz and the power-law slopes s are similar.
The kappa function components create humps around 3 μHz in
both cases because they have similar widths, which is the
signature of transients of similar duration in the two time series.
At this stage, it is convenient (and justified from Equation (11))
to normalize the spectra to σ(ν) in order to better visualize
possible deviations from the random c2

2 distributed variations
around the mean power. The middle panels display the same
information as the right panels, but for the whitened power
spectra.

Given the number of data points, the 95% global Fourier
confidence level is at 11.4σ (Equation (12), gray lines). In
Figure 9, the peak at 30 μHz labeled h1 reaches 26.3σ, which
corresponds to a global probability of occurrence of 1.7 × 10−8

(Equation (12)), while the Fourier power spectrum of the
reference time series is everywhere below the 95% global
confidence level. At 5.8σ, the time-averaged wavelet spectrum
also peaks well above the corresponding 95% global
confidence level (yellow curve, 2.9σ at 30 μHz from
Equations (13), (18)–(20)). The associated global probability
is 6 × 10−7, i.e., 35 times larger than that derived from the

Fourier spectrum, yet still extremely small. The reference time-
averaged wavelet power exceeds the 95% local confidence
level at 20 μHz (orange curve), but this nearby peak is
excluded at the 95% global confidence level. The single
Fourier component corresponding to the h1 peak is plotted in
magenta in the top left panel of Figure 9. Comparison with the
time series indicates that, except for the last pulse, the repetition
period of 9 hr is very regular.
The bottom left panels of Figures 9 and 10 show the

whitened Morlet wavelet power spectra, i.e., normalized at
each time step by the estimated mean Fourier power (red
curves in the right-hand panels).12 They are the counterparts
of the whitened spectra of the middle panels. From
Equation (11), the 95% local confidence level is at 3σ and,
as expected given the large number of points in the spectrum,
many points outside the COI lie above it for both time series
(orange contours). The 95% global confidence level is at 14σ
(Equations (11) and (16)–(18)). In the reference wavelet
spectrum, the power outside the COI does not exceed 8σ. In
contrast, in the bottom left panel Figure 9, the main peak of
power, around 30 μHz and 35 hr, reaches 16.3σ. This peak
has a 4.7 × 10−3 global probability to occur by chance
(Equations (11) and (15)). Around this frequency, the power
remains above the 95% local confidence level during most of
the time series, except between 100 and 115 hr. Using
Equation (14), the probability of occurrence of a structure
of this length at a given frequency is 7.3 × 10−11, which is
comparable to the local probability associated with the
corresponding peak in the time-averaged spectrum, as
expected from Section 4.2.1 and Figure 5.

6. SUMMARY

The wavelet code described in TC98 is widely used in a
variety of scientific fields, as indicated by the 1741 citations
of the paper referenced in the Astrophysics Data System as of
2016 March 21. It is used both for the analysis of observations
(e.g., Ireland et al. 1999; De Moortel et al. 2000; Williams
et al. 2001; De Pontieu & McIntosh 2010; McIntosh
et al. 2010; Madsen et al. 2015) and of numerical simulations
(e.g., Nakariakov et al. 2004; Mészárosová et al. 2014; Pascoe
et al. 2014). The popularity of this code is due to its ease of
use, its ability to produce clear and convincing graphics, as
well as its output of rigorous quantitative confidence levels.
However, it should not be used as a black box, for the
confidence levels are linked to background models and, as we
have demonstrated in Section 3, the white and red noise
models built into the code generally cannot represent the
power spectra of solar coronal time series. The problem is
potentially worse if detrending is applied to the time series,
for this pre-processing distorts its power spectrum (Section 2).
In addition, even assuming an adequate background model,
the confidence levels are local, i.e., they do not take into
account the total number of degrees of freedom in the wavelet
and time-averaged wavelet spectra. In most cases, it is thus
likely that at least one bin of the spectrum lies above the TC98
confidence levels. Both effects—an improper background
model and local confidence levels—are prone to produce false
positives.

12 Note that by using the same background at each time step, one assumes the
stationarity of the random process against which the significance of the
observed power is tested (TC98).
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These limitations of the TC98 code can nevertheless be
easily overcome. First, a noise model suited to the considered
data set must be found. We propose in Section 5 a function
(Equation (26)) that satisfactorily fits the power spectra of
many time series, but the adequacy of the chosen model
should always be verified. Generalizing the principle
introduced by Scargle (1982), global confidence levels
taking into account the total number of degrees of freedom
can then be computed for the Fourier, wavelet, and time-
averaged wavelet spectra, as described in Section 4. The
Appendix describes the practical details. Note that the
empirically derived coefficients are valid only for the Morlet
and Paul wavelets and for time series of up to 214 samples.
Other Monte-Carlo simulations should be carried out to
determine their equivalents for other wavelets and/or longer
series.

Following this methodology, we re-analyzed in Section 5
one of the SDO/AIA intensity time series in which Froment
et al. (2015) detected 9 hr period pulsations. The Fourier and
time-averaged wavelet spectra both exhibit a strong peak at
30 μHz with associated global probabilities of occurrence
below 10−6. The corresponding structure in the wavelet
spectrum lasts for most of the sequence and also peaks above
the 95% global confidence level. In contrast, no significant
power could be detected in a nearby reference region, which
implies a sharp spatial boundary of the detected periodic
phenomenon, as was already visible in the power maps (Figure
4) of Froment et al. (2015).

The present analysis of the Fourier and wavelet confidence
levels, combined with our previous investigation of potential
instrumental and geometrical artefacts (Auchère et al. 2014),
lead us to conclude beyond reasonable doubt that the detected
pulsations are of solar origin.

The authors would like to thank John Leibacher for
relentlessly trying to demonstrate the instrumental origin of
the pulsation phenomena reported here. The authors acknowl-
edge the use of the wavelet code by Torrence & Compo (1998).
The authors acknowledge the use of SDO/AIA data. This work
used data provided by the MEDOC data and operations center
(CNES/CNRS/Univ. Paris-Sud), http://medoc.ias.u-psud.fr/.
Following the design principles advocated by Tufte (2001), we
aimed to maximize the data–ink ratio of our graphics.

APPENDIX
HOW TO USE THE TC98 CODE WITH CUSTOM NOISE

MODELS AND CONFIDENCE LEVELS

Here we provide practical details on how to use the TC98
code with any noise model (e.g., the one described in Section 5,
Equation (26)) instead of the built-in white or red noise, and
with the global confidence levels introduced in Section 4. Let
data be an n element long 1D floating point array containing a
time series of step dt. The Morlet wavelet power spectrum is
obtained with the following Interactive Data Language
commands

mother = ’Morlet’
s0 = 2∗dt
dj = 1/8.0
j1 = FIX(alog(n/2.0)/alog(2)/dj)
wave = WAVELET(data, dt, PERIOD = period, S0 = s0, PAD = 1,

DJ = dj, J = j1, MOTHER = mother, COI = coi)
power = ABS(wave)2

Let us now assume that we have fitted the Fourier power
spectrum of the time series with, e.g., Equation (26) and that
the result as a function of the period values returned by the
above call to the WAVELET function is stored in the 1D floating
point array background_fit_period. The trick to compute
the corresponding confidence levels is to exploit the
GWS keyword that is normally provided in the code to use the
time-averaged wavelet spectrum as a background noise model.
For a local confidence level of 95% we use

local_siglvl = 0.95
local_signif = WAVE_SIGNIF(data, dt, scale, 0, $

SIGLVL = local_siglvl, GWS = background_fit_period,
MOTHER = mother)

local_signif = REBIN(TRANSPOSE(local_signif), n, j1 +1)

The last line replicates the local_signif 1D array at every
time step to form an array of the same size as the power array.
The points of the wavelet spectrum above the 95% local
confidence level then correspond to the elements of the
power array greater than local_signif. Now for a global
confidence level of 95%, we first use Equations (16)–(18), to
compute the corresponding local confidence level

global_siglvl = 0.95
jcoi = ALOG(coi/1.033/s0)/ALOG(2)/dj
Nout = TOTAL(jcoi[1:n-2])
a = 0.810∗(Nout ∗ dj)0.011
n = 0.491∗(Nout ∗ dj)0.926
local_siglvl = 1 - (1—global_siglvl (1/a))(1/n)

Note that we estimate Nout—the number of bins of the
spectrum outside the COI—by using the coi array returned by
the WAVELET function, with 1.033 being the Fourier factor for
the Morlet wavelet (see TC98). Then we use the same syntax as
above to call the WAVE_SIGNIF function, the only difference
being the different value of the local_siglvl variable

global_signif = WAVE_SIGNIF(data, dt, scale, 0, $
SIGLVL = local_siglvl,GWS = background_fit_period,
MOTHER = mother)

global_signif = REBIN(TRANSPOSE(global_signif), n,
j1 +1)

The points of the wavelet spectrum above the 95% global
confidence level then correspond to the elements of the
power array greater than global_signif. Similarly, we
can compute the 95% global confidence level for the time-
averaged wavelet spectrum after using Equations (18)–(20) to
compute the corresponding local significance level

Sout = MAX(jcoi)
a = 0.805 + 0.45∗2 (−Sout∗dj)
n = 1.136∗(Sout∗dj)1.2
time_avg_local_siglvl = 1 - (1—global_siglvl (1/a))

(1/n)
dof = n—scale/dt
time_avg_global_signif = WAVE_SIGNIF(data, dt,
scale,1, $
SIGLVL = time_avg_local_siglvl, $
GWS = background_fit_period, DOF = dof, MOTHER = mother)

The WAVE_SIGNIF function is now called by setting the
sigtest argument to 1 and setting the DOF keyword to the
number of data points minus half the number of those in the
COI. The resulting array has the same number of elements as
the time-averaged spectrum and is used to determine which
bins are above the 95% global confidence level.
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The Appendix of Auchère et al. (2016) provides practical details on how to use the wavelet code of Torrence & Compo (1998,
hereafter TC98) with any noise model (e.g., the one described in Section 5, Equation (26)) instead of the built-in white or red noise,
and with the global confidence levels introduced in Section 4. However, typos prevented the in-line code snippets provided in the
Appendix from running properly. These typos are corrected below. In addition, a full demonstration code is now available at https://
idoc.ias.u-psud.fr/MEDOC/wavelets_tc98. A few other typos at the end of Section 4 are also corrected. The method described in the
paper as well as the results and conclusions are unaffected.

1. Confidence Levels (Section 4)

On page 9, the second paragraph should read as follows. “As before, we can now use the above expressions to compute for
a time-averaged spectrum the local confidence level that should be used to achieve a chosen global confidence level. For Figure 4,
we have a=0.807 and n=12.7. The 95% global confidence level (Pg(m)=0.05) thus corresponds to

= - - = ´ -( ) ( ( ) )P m 1 1 0.05 1 101 12.7 1 0.807 3 (i.e., to a 99.9% local confidence level). This value can in turn be used as an
input to the TC98 code.”

2. How to Use the TC98 Code with Custom Noise Models and Confidence Levels (Appendix)

Let data be an n element long 1D floating point array containing a time series of step dt. The Morlet wavelet power spectrum is
obtained with the following Interactive Data Language commands.

mother = ‘Morlet’
s0 = 2*dt
dj = 1/8.0
j1 = FIX(alog(n/2.0)/alog(2)/dj)
wave = WAVELET(data, dt, PERIOD = period, S0 = s0, PAD = 1, DJ = dj, $

J = j1, MOTHER = mother, COI = coi, SCALE = scale)
power = ABS(wave)∧2

Let us now assume that we have fitted the Fourier power spectrum of the time series with, e.g., Equation (26) and that the result as
a function of the period values returned by the above call to the WAVELET function is stored in the 1D floating point array
background_fit_period. The trick to compute the corresponding confidence levels is to exploit the GWS keyword that is
normally provided in the code to use the time-averaged wavelet spectrum as a background noise model. For a local confidence level
of 95%, we use the following.

local_siglvl = 0.95
local_signif = WAVE_SIGNIF(data, dt, scale, 0, $

SIGLVL = local_siglvl, GWS = background_fit_period, MOTHER = mother)
local_signif = REBIN(TRANSPOSE(local_signif), n, j1+1)

The last line replicates the local_signif 1D array at every time step to form an array of the same size as power. The points of
the wavelet spectrum above the 95% local confidence level then correspond to the elements of the power array greater than
local_signif. Now for a global confidence level of 95%, we first use Equations (16)–(18), to compute the corresponding local
confidence level

global_siglvl = 0.95
jcoi = ALOG(coi/1.033/s0)/ALOG(2)/dj
Nout = TOTAL(jcoi>0)
a_coeff = 0.810*(Nout*dj)∧0.011
n_coeff = 0.491*(Nout*dj)∧0.926
local_siglvl = 1 - (1 — global_siglvl∧(1/n_coeff))∧(1/a_coeff)

Note that we estimate Nout—the number of bins of the spectrum outside the COI—by using the coi array returned by the
WAVELET function, with 1.033 being the Fourier factor for the Morlet wavelet (see TC98). Then, we use the same syntax as above to
call the WAVE_SIGNIF function, and the only difference is the different value of the local_siglvl variable.
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global_signif = WAVE_SIGNIF(data, dt, scale, 0, $
SIGLVL = local_siglvl, GWS = background_fit_period, MOTHER = mother)

global_signif = REBIN(TRANSPOSE(global_signif), n, j1+1)

The points of the wavelet spectrum above the 95% global confidence level then correspond to the elements of the power array
greater than global_signif. Similarly, we can compute the 95% global confidence level for the time-averaged wavelet spectrum
after using Equations (18)–(20) to compute the corresponding local significance level.

Sout = MAX(jcoi)
a_scl_coeff = 0.805 + 0.45*2∧(−Sout*dj)
n_scl_coeff = 1.136*(Sout*dj)∧1.2
time_avg_local_siglvl = 1 - (1 — global_siglvl∧(1/n_scl_coeff))∧(1/a_scl_coeff)
dof = n — scale/dt
time_avg_global_signif = WAVE_SIGNIF(data, dt, scale, 1, $

SIGLVL=time_avg_local_siglvl,$
GWS=background_fit_period, DOF = dof, MOTHER = mother)

The WAVE_SIGNIF function is now called with setting the sigtest argument to 1 and setting the DOF keyword to the number
of data points minus half the number of those in the COI. The resulting array has the same number of elements as the time-averaged
spectrum and is used to determine which bins are above the 95% global confidence level.

The authors are very grateful to James Threlfall for bringing these errors to our attention.
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