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Since the powerful techniques developed in communications theory have been little used to Fourier analyze
astronomical measurements and correct them for smearing, we discuss the application of Fourier transforms
and the Fast Fourier Transform algorithm to these problems. Basic sampling theory and the discrete Fourier
transform are presented first, and then applied to the analysis of solar time series and to the correction of line
spectra for observational smearing. The solution of the empirical restoration problem is based on a filter tech-
nique, which suppresses the noise and corrects for smearing in an optimum fashion.
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1. The Purpose of this Discussion

Our motivation in writing this paper stems from
the realization that fundamental concepts and
numerical techniques developed in communications
theory are not generally known or fully exploited in
observational astronomy today. As a result, a large
amount of astronomical data is published in its raw
form, which usually means that it is completely un-
corrected for either noise or smearing effects. This
situation is no longer necessary if the measurements
are made and reduced by a mathematically-sound
scheme such as one based on discrete Fourier trans-
forms and optimum filter techniques.

Considering the amount of effort devoted to the
theoretical analysis of astronomical observations and
the often-divergent results from such work, the ob-
servers are obliged to present measurements as free
of observational distortions as possible. Therefore,
our goal is to describe a general method that we find
useful in numerically analyzing and improving
discrete measurements of astronomical spectra
without significantly affecting their true information
content.

* Both Kitt Peak National Observatory and the National
Center for Atmospheric Research are sponsored by the
National Science Foundation.
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The correction of astronomical data for smearing
effects, i.e., restoration, is a recurrent problem that
has not been satisfactorily solved on a routine basis
because of practical difficulties in the inversion of the
convolution integral in the presence of noise. In the
past, Fourier transform techniques were not applied
routinely to empirical spectral analysis and restora-
tion because of the long times required for calculation
of discrete Fourier transforms of empirical data. The
Fast Fourier Transform algorithm (referred to as the
FFT throughout the following discussion) now
reduces the computing times to very acceptable
values, and hence, permits practical application of
Fourier techniques to solutions of these problems.
Although our experience has been in the analysis of
solar time series and the restoration of measurements
of the solar Fraunhofer spectrum, the generality of
the Fourier transform approach does not limit it to
these two particular one-dimensional problems.

In this paper we emphasize the basic concepts
through explanations and illustrations, but at the
expense of mathematical completeness. However,
this subject has been thoroughly investigated in
communications theory, and the reader is referred
to IEEE Audio Transactions. Special Issue on the
Fast Fourier Transform (1967), Bracewell (1965),
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Fig. 1. Ilustrations of the basic continuous signal, the noise-contaminated signal, and their transforms

Middleton (1960), Cooley et al. (1970a, 1970b), Berg-
land (1969) and Gold ef al. (1969) for more complete
discussions. The reader is expected to be familiar with
the shift, convolution, and power theorems ap-
plicable to Fourier transforms (see Bracewell, 1965).
The following notation will be used through the text:

Complex Fourier Transform of F (x) = F (s)
Complex Conjugate of F(s) = F(s) * (1)
Convolution of F(x) with 4 (z) = F (x) * A (x)

where z is the independent variable in the measure-
ment domain, and s is the corresponding frequency
variable in the transform domain.

II. Fundamentals
A. Introduction

In astronomical problems, an infinitely-long,
smooth signal is assumed to underlie the measure-
ments. This signal can be either the intensity varia-
tion with wavelength in a spectrum, the intensity
variation with time in a light curve, or generally any
measurable quantity that varies with time, position,
or optical wavelength. We measure a portion of such
a signal by either recording the photometer output
voltage as a function of time in the case of a light
curve or by generating a time-varying signal through

scanning across a photographic plate or scanning the
spectrum directly. The measurement can only cover
a finite portion of the basic signal, and it will appear
noisy because of fluctuations either inherent in the
signal or introduced by the measuring apparatus. In
this section we center the discussion on the effects of
sampling and finite measurement length on a noise-
contaminated signal and its Fourier transform. As we
shall see, the sampling theorem will give the condi-
tions under which discrete measurements of such a
signal will have a Fourier representation suitable for
use in both the restoration and spectral analysis
problems. The discrete Fourier transformation and
its inverse will also be defined so as to be consistent
with the later discussion of the FFT.

B. Definition of the Measurement Process
and the Discrete Fourier Transform

1. The Basic Continuous Signal
and its Fourier Transform

Eventually we are to be concerned with the
measurement of a segment of a long, continuous
signal such as the smooth solar Fraunhofer spectrum
shown in Figure 1A. However, in order to explain the
effect of such a measurement process in the transform
domain, we begin with the idealization in which the
basic underlying signal is recorded continuously over
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Fig. 2. Plots illustrating the effects of sampling and the finite measurement length in both domains

its entire length. Figures 1, 2 and 4 are illustrations
of the signal and its Fourier transform as they appear
in the successive steps necessary to go from the ideal
continuous measurement to a realistic one composed
of a finite number of equally-spaced values. In these
three illustrations we plot the logarithm of the power
spectrum instead of the actual values of the complex
transform. This logarithmic technique shows more
clearly the subtle power variations at the high fre-
quencies.

Real physical measurements yield data whose
Fourier transforms do not extend to arbitrarily high
frequencies because of either the finite response time
of the electrical and mechanical measuring in-
strument or the finite spatial resolution of the optics.
We say that such data is band-limited because its
transform is negligible outside a known, finite range
or band of frequencies. In addition, the basic signal
is effectively band-limited by the characteristics of
the physical processes producing it. In the case of
optical spectra, the signal band-limit is fixed by the
characteristic widths of the spectral lines. In a
properly designed experiment the measurement band
limit should be greater than that inherent to the
signal, ie., in line profile analyses the instrument
width must be less than the width of the line profiles
under study. On these grounds, we will consider only
basic signals that are band-limited in the low-pass

12*

sense where the non-zero portion of the transform
lies in the frequency range from zero to some absolute
cutoff frequency |sp|.

Figure 1B shows a piece of the basic continuous
signal and the logarithm of the modulus of the conti-
nuous Fourier transform of the entire signal. This latter
function displays both the signal band-limit or cutoff
at a frequency sy, and the narrow low frequency spike
due to the slowly-varying continuum. The noisy ap-
pearance of the transform arises from the beating of
the sinusoidal components necessary to reproduce
the spacing between the spectral lines. The symmetry
in the transforms is a natural characteristic of the
transform of real data, and it will be discussed later.
In Fig. 1C we show the effect of additive noise on the
signal and the transform, which now extends to
higher frequencies because of the noise contribution.
Typically, the noise is white, i.e., its transform is
essentially a constant out to high frequencies. How-
ever, as we depict it here, the measurement process
contains a filter that terminates the transform at a
frequency sy beyond the band-limit of the basic
signal.

2. Discrete Measurements and the Effects of Sampling

Thus far, only long, continuous signals and their
transforms have been described, but now consider
the case shown in Fig. 2A where the signal is sampled
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at equal intervals in the 2 coordinate. The continuous
Fourier transform of this set of data values is com-
puted from the sum

N
F(s)=N-1 3 F(x;) et27%2, 2)

i=1
where z; = (j— 1) Az, Az =sampling interval,
N =mno. of data points (very large but finite),
s = generalized frequency variable, and F (x) = signal.
Our particular choice of normalization will be discus-

sed later in Section II. C.

The sampling causes a replication of the basic
transform of the original continuous data at intervals
of As = Ax~1in the transform domain (see Bracewell,
1965, p. 192 for a rigorous proof). When the contribu-
tions from the successive replicas are added together,
the result is a periodic transform as shown in Figs. 2A
and 2B. In order to appreciate the cause of this
fundamental periodicity, we may consider the sam-
pled data values to be the coefficients of a Fourier
series expansion of the continuous transform F(s).
Equation (2) is the required expansion, but such a
series representation is possible only if the continuous
function is periodic. Thus, the Fourier transform of a
sequence of sample values must be periodic as illus-
trated in Figs. 2A and 2B.

This replication of the basic transform introduced
by the sampling can lead to unreliable transforms if
the replicas overlap. For example, Fig. 2A shows
undersampling where the repeated basic transforms
overlap to produce a distorted empirical transform.
In Fig. 2B the sampling interval has been halved to
show how the repeated transforms now move further
apart, and become completely separated. These
examples illustrate the importance of the folding
frequency midway between the centers of the re-
peated transforms; this characteristic frequency due
to sampling is called the Nyquist or critical frequency,
and is equal to one half of the sampling rate, i.e.,
Sxy = 0.5/A . If the basic transform extends to fre-
quencies greater than the Nyquist frequency, the
transform computed from measurements will contain
contributions due to the overlap or folding of the
high-frequency amplitudes into the low-frequency
band from s =0 to syy. When contributions from
undersampled high-frequency components cause the
computed amplitudes to differ from those of the basic
transform, the Fourier transform is said to be aliased.

However, if the signal being measured is band-
limited so that its transform vanishes above some
finite frequency, the proper choice of the sampling
interval will separate the replicas enough to prevent
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their mutual distortion. This implies the existence
of a fundamental relation between the sampling
interval and the measurement band-width in the
transform domain. This relationship is known as the
sampling theorem, which (following Bracewell, 1965,
p. 189) states: If a function has a Fourier transform
that is zero at frequencies greater than or equal to some
finite frequency sq, this function is fully specified by
values spaced at equal intervals not exceeding 0.5/sq.
As long as the band-width of the measurement is less
than the Nyquist frequency, the sampling theorem
is satisfied. If the theorem is not violated in either
the sampling process or later manipulations of the
data, the discrete samples will contain all of the
information present in the original continuous signal,
and the continuous Fourier representation of the
discrete samples (computed from Eq. 2) will be identi-
cal to that of the original signal at frequencies below
Syy- Noise is broadband, however, and a band-
limiting analog filter must be employed prior to
sampling to terminate the noise spectrum in practical
measurements if aliasing by the transform of the
random noise signal is to be avoided.

Thus far in our discussion, the entire signal has
been sampled and recorded; however, only a short
segment of the total signal can be considered in a
real measurement. This practical restriction is con-
ceptually equivalent to the extraction of the measured
values from the infinitely long, sampled signal shown
in Fig. 2B; and, analytically, it is accomplished by
multiplying the infinitely-long signal by a rectangular
window function of unit height and width equal to
the length of the measurement (the rectangle function
11 (z) given by Bracewell, 1965, p. 52).

One result of this extraction process is the occur-
rence of the discontinuities at the beginning and end
of the measurement as shown in Fig. 2C. Such dis-
continuities are inconsistent with the original measur-
ing process because the measurement band-width is
usually too small to allow such rapid signal changes.
Unfortunately, the Fourier representation is that of
the entire segment, including the discontinuities, in
which case the transform of the data can extend
beyond the band-limit of the measurement, i.e., the
effective signal is undersampled. This is an example
of a necessary step in the data-gathering process that
can introduce aliasing in the computed transforms
even though the sampling theorem is not violated
directly in the measurement.

Because we must use measurements of finite
length, the empirical transform cannot be identical
to the transform of the long, basic signal, even in the
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Fig. 3. An illustration of aliasing due to undersampling. The nine sinusoidal components of the artificial signal are plotted

with straight lines connecting the sample values. The apparent equality between the frequency of components above and

below 8., = 0.5 shows how undersampling makes the amplitudes of the components above s, indistinguishable from lower
frequency terms

limit of continuous data. The computed continuous
transform is the result of the convolution of the basic
transform with the resolution function sin(n Ls)/ns,
where L is the measurement length. This convolution,
inherent to all practical measurements, redistributes
the Fourier amplitudes or, equivalently, mixes fre-
quencies in the computed transform. This smearing
effect is commonly referred to as leakage. The
redistribution of the low-frequency spike can signifi-
cantly distort the computed transform as shown in
Fig. 2C where the distortion is quite evident in the
frequency range from the measurement cutoff to the
Nyquist frequency. Because the corruption of the
transform by aliasing and leakage can affect the
results of data manipulation via the Fourier trans-
form, later we will describe procedures to minimize
these effects by smoothing the sharp ends of the
measured segment and by removing low-frequency
components that produce the spike.

We often find that the meaning and implications
of aliasing are not appreciated by researchers who
want to use Fourier techniques as a tool. So, at the
risk of being even more tedious, we consider the
meaning of aliasing a bit further. Aliasing means that

the transform value computed at a frequency s is not
only composed of the true amplitude at that frequency
but also of amplitudes at frequencies higher than the
Nyquist frequency syy. The Fourier representation
of undersampled data is ambiguous because the true
frequency content of the signal cannot be determined.
In order to demonstrate this ambiguity, in Fig. 3 we
show a visual example of how aliasing occurs through
undersampling. This figure shows nine sinusoids with
frequencies 0.1, 0.2, 0.3,...,0.9 (cycles/unit of z)
sampled at an interval of 4z =1 and plotted with
straight lines connecting the sample values. Note
that in this case the Nyquist fequency is 0.5. A signal
constructed by adding these nine sampled sinusoids
together will be aliased because those with frequencies
greater than the Nyquist frequency have an apparent
frequency that is the same as one of the low-frequency
sinusoids, i.e., higher-frequency components (s > 0.5)
cannot be distinguished from true components
(8 < 0.5). The Fourier transformation of the com-
posite signal will yield amplitudes that are too large
at frequencies less than 0.5. The difficulty cannot be
removed by computing the transform at frequencies
greater than sy, because of the periodicity in the
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Fig. 4. Tllustrations of (A) the periodicity in the effective signal required by discreteness of the transform, (B) the 15
percent data window used to mask the zero-mean data, and (C) the effects due to end-region masking of the data segment

transform. Therefore, no new information on the fre-
quency content of a discretely-sampled signal can be
obtained by computing the Fourier transform at fre-
quencies greater than the Nyquist frequency. It is
essential that the part of the transform originating
in the basie, noise-free signal not be aliased ; otherwise,
application of the Fourier convolution, shift, and
power theorems will yield neither correctly restored
and shifted data nor correct power spectra.

3. The Discrete Forward
and Inverse Fourier Transformations

In the previous section only a discretely-sampled
signal and its continuous Fourier transform were
considered; but if the digital computing technique
is to be exploited fully, both the data and its Fourier
transform must be discrete, i.e., we must sample in
both domains. In order to suitably define the discrete
forward transformation, let us sample the continuous
transform given by Eq. (2) at N discrete frequencies
sy spaced at equal intervals of 4s = L1 = (NAz)?!
in the range from s =0 to (N — 1)/NAz. In this
case the k2 frequency is given by

kE—1

Se=—345k=123,...N. (3)

Equation (2) evaluated at these particular frequencies
defines the discrete forward Fourier transformation

of N data values. This choice of frequency spacing is
optimum in the sense that the transform values are
spaced one resolution width ((NVAz)-1) apart.

The discrete inverse Fourier transformation can
now be defined as

N
F () =k£ F(s;) etiznn 4)

where the normalization is chosen such that a forward
transform (Eq. 2) followed by an inverse transform
(Eq. 4) returns the original function unchanged.

In analogy with the previous case of periodic
transforms produced by sampled data, the sampling
of the continuous transform requires that the observed
signal segment must be thought of as one period of
a periodic function, where the segment is repeated
indefinitely along the measurement axis. Because of
this periodicity as illustrated in Fig. 4A, the concepts
of aliasing and leakage are also applicable in the
measurement domain. Undersampling in frequency
can produce aliased or overlapped data segments,
but this aliasing in the measurement domain (often
called aliasing in time) is usually not a problem in our
applications since the sampling interval in frequency
is fixed by the number of data points. Much more
significant is the leakage or wrap around from one
segment to the other caused by convolution in the
measurement domain (e.g. as in filtering or inter-
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polating). The wrap-around problem can be reduced
by extending the data sequence with values of the
mean thereby increasing the separation between the
repeated segments.

Since the result of the discrete forward transform
of N real data values is a set of N complex numbers,
there must be a two-fold redundancy in the computed
set of transform values. The transform of real data
has conjugate symmetry about both the origin and
the Nyquist frequency, i.e., F(s) = F(— s)» and
F(sny + A8) = F (syy — As)x. Figure 5 illustrates
this symmetry by showing the amplitudes of the real
and imaginary parts of a real-data transform plotted
from 0 to 2 syy in frequency. Clearly, no new in-
formation is contained in the wvalues above the
Nyquist frequency. Since we compute a one-sided
transform in the frequency range from 0 to 2 syy,
which is just one full cycle of the total periodic trans-
form, the values above the Nyquist frequency are
the coefficients of the negative frequency terms in the
normal two-sided case. As a further result of the con-
jugate symmetry, the imaginary parts of the trans-
form at the origin and Nyquist frequency are identi-
cally zero. Thus, the discrete forward transform
yields N non-zero, independent Fourier coefficients
of which N/2 + 1 apply to the real terms and N/2 — 1
apply to the imaginary ones.

4. Low Frequency Problems

Although we have shown the data on its true
intensity scale in Fig. 4, in practice, the mean of the
measured values is subtracted prior to any Fourier
transformations and modifications of the data. The
mean is essentially an invariant under the types of
filtering we will consider; therefore, the true intensity
scale is recovered by simply adding the mean at the
end of the computation. The consistent use of data
with a zero mean simplifies the end-point problems
described in the next section.

Removal of the sample mean from the data only
affects the one transform value at zero frequency,
but other very low-frequency effects such as slow
signal drifts and real continuum variations in a
spectrum can produce a low-frequency spike in the
transform of the data. The removal of such spurious
trends is necessary to minimize the effect of the redis-
tribution of the spike by the resolution function.
Often, low-order polynomials obtained from least
squares fitting of the data are used to remove trends
from the data prior to Fourier analysis.
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Fig. 5. A sketch of the real and imaginary components that
illustrates the conjugate symmetry of the one-sided Fourier
transform of real, asymmetric data

5. The Special Problem at the Ends of Data Strings

As mentioned earlier, the discontinuities at the
ends of the measured segment introduce a rapid
signal change that is not consistent with the band-
width of the measurement. The difficulties at the end
of the data string become apparent as oscillations or
Gibbs phenomena if attempts are made to interpolate
or filter the signal. In order to lessen the effects of
these discontinuities, we force the end regions to
make a smooth transition to the mean of the measured
values by multiplying the sequence of data values
with a set of weights called a date window. A data
window should only affect the ends of the segment
where the weights effectively mask the actual data
values. The application of a data window, and end
region masking are different names for the same
operation, and they will be used interchangeably
throughout the remainder of the paper. In Fig. 4B
we show several periods of a data window that
modifies only the first and last 15 percent of the data
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segment. Figure 4C shows the smoothing that results
from its application to the periodic data string in
Fig. 4A. Such a set of weights apodizes the resolution
function in the frequency domain, and thus reduces
the leakage due to the wings of the function. Note
that a data window should only be applied to data
with a zero mean; otherwise, the smoothed step at
the ends of the segment will be larger than is either
necessary or desirable.

C. Summary

We have described a linear transformation, the
discrete Fourier transform, that converts N discrete
measurements into N complex numbers by means of
the defining equation

N
F(s;) = N-1 3 F () e~ 2% ()
j=1
where z; = (j—1) Az for j=1,2,...N and
sy=(k—1)/NAxz for k=1,2,...N. The discrete
forward Fourier transform for real data has con-
jugate symmetry about the Nyquist frequency, so
that only the first N/2 + 1 complex values need to be
considered. The normalization of the forward trans-
form is such that the computed amplitudes are on
the same scale as the original measurements, except
that one must include the transform values at
negative frequencies to determine the total contribu-
tion to the transform at some absolute frequency |sy|.
The corresponding inverse transform is

F(z;) = Z’N F(sy) etiznasm, (6)
k=1

The inverse transform is normalized in a manner to
make the transform pair cyclical. These definitions
of the discrete Fourier transform pair are general
enough to allow the input sequence F (x;) to be com-
plex.

If the sampling theorem is not violated, the inter-
mediate values of both the continuous data function
and the continuous complex transform can be re-
covered by convoluting the discrete values with the
proper interpolation function. The interpolation
formulae are as follows.

Measurement Domain Interpolation:

. sin [ (2 — ;) [A«]
Flo)=N f,§1 F (@) tontne— w,; i )
Transform Domain Interpolation:

sin[n (s — 8;) NAx] 8
tan [ (s — 8;) A ] (8)

F)= N1 3 Fs)
J=1

Astron. & Astrophys.

The following procedure will help the user avoid
common problems in computing reliable transforms.
First, the sampling rate must be such that the basic
signal is oversampled to prevent aliasing by the
replicas of the basic transform (1/4z < 2 s,). Second,
the sampling instrument must contain a real-time
filter with a cutoff frequency no greater than one
half of the sample rate if aliasing by noise is to be
avoided. Third, the low frequency spike should be
minimized by subtracting the sample mean and, if
necessary, by removing trends from the data. Fourth,
the data values must be multiplied by a data window
which will reduce leakage effects due to the finite
measurement length. Finally, the modified data
sequence can be artificially extended with zeroes to
reduce leakage between the repeated data segments.

II1. Calculation of Fourier Transform
A. The FFT Algorithm

The computational methods now used to evaluate
the discrete transform given by Egs. (5) and (6) are
described by Cochran et al. (1967) and Cooley et al.
(1970a). In earlier papers Cooley and Tukey (1965),
and Gentleman and Sande (1966) describe the basic
algorithm. White and Cha (1967) give a detailed
description of one version of the algorithm as used by
Forman (1966). The literature on the FFT is now
extensive but thoroughly listed in IEEE Audio
Transactions, Special Issue on the Fast Fourier
Transform (1967), Bergland (1969) and Cooley et al.
(1970a). There is no need to give the algorithm in
algebraic detail since this task is already well done
in the existing literature, but the general ideas under-
lying it are presented below.

The basic algorithm applies when the number of
points in the sample is an integral power of 2; how-
ever, it has been generalized to the case where N is a
composite integer. The algorithm converts the serial
product in Eq. (5) into a set of nested sums whose
evaluation requires fewer additions and multiplica-
tions than the straightforward evaluation of the
serial product. This reduction in addition and multi-
plication is the principal mechanism by which the
computation time is decreased. For example, the
direct method requires on the order of N2 muitiplica-
tions in contrast to 2V log, N in the FFT. In addition
the FFT results are more accurate because the reduc-
tion in the number of arithmetic operations also
reduces the cumulative round-off errors. The FFT
programs eliminate redundancy in calculation of
sines and cosines, i.e., only N/4 + 1 sine and cosine
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values are required. All of these time-saving devices
combine to give speed increases of 50 to 100 times
when the FFT is applied to typical solar problems.

B. Comments on Available FFT Routines

We use FFT routines written by M. L. Forman
of AFCRL (Forman, 1966), Norman Brenner of MIT
(Brenner, 1967, 1968), G. D. Bergland of Bell Labs
(Bergland, 1968) and one of us (JWB). The Bell Lab
subroutines are designed for one-dimensional, real
data; whereas, the more-general MIT programs can
handle multidimensional, complex input data. Using
the NCAR CDC 6600 computer the MIT FOURZ2
routine requires 0.1 seconds for calculation of the
transform of 1024 points as compared to 0.07 seconds
for Bergland’s FFA program. Many new FFT routines
are now available such as those described by Singleton
(1968, 1969).

The faster routfines usually require that the
number of data values be an integral power of two
(V= 27). In cases where the number of measured
points is not the desired power of two, we can use the
artifice of extending the data sequence with values
of the mean. The immediate effect of such extensions
is to decrease the frequency sampling interval to less
than the optimum spacing of As = (NAz)1,
i.e., the transform of extended data will be computed
at a higher frequency resolution than is justified by
the length of the measurement. The extension of a
data sequence also effects the magnitude of the trans-
form since the normalizing constant IV in the forward
transform (Eq. 5) is the total number of points used
in the calculation and not only the number of measure-
ments. In order to preserve the scaling for different
extensions of data with a zero mean, the forward
transform must be multiplied by N/M, where M is
the number of measurements, and N—M is the
number of appended zeroes.

Users of the available subroutines must know the
normalization and the coordinate system of the
computed transforms. For example, the MIT and
Bell Lab programs contain no normalization; there-
fore, recovery of the data after a forward — inverse
transform sequence requires multiplication by a
scaling factor (N—1). The coordinate system for these
routines is such that both the data and the transform
are one sided, i.e., the data extends from x = 0 to
NAz, and the transform from s = 0 to 2 sy,. This
lack of symmetry can cause confusion when one is
first checking the FFT routines by computing the
transform of a simple analytic function for which the

transform values are known. For example, consider
a simple gaussian exponential with the center of
symmetry placed midway in the data string,
2y = NAxz/2. The Fourier transform of a gaussian
exponential is another gaussian, in which case we
may naively expect the computed transform to show
the exponential in the real part of the transform and
zeroes for all of the imaginary amplitudes. Instead,
the real amplitudes alternate in algebraic sign as we
go from point to point along the frequency axis. This
wildly fluctuating function is simply the desired
gaussian transform multiplied by the shift theorem
factor exp(— ¢2m, s;), which in this case is simply
(— 1y since s; = (j — 1)/NAx. Such fluctuations
due to the shift of the input data are easily removed
by applying the opposite shift factor exp (¢i2zx, s;)
to the complex data transform. In applying the shift
and derivative theorems in data manipulation, the
necessary complex operators (such asexp (— 127, s;))
must have conjugate symmetry about the Nyquist
frequency, i.e., the values of the operators in the
upper frequency range syy <s; <28yy, must be
computed as though they apply at the negative fre-
quencies 8] = 8; — 28yy.

IV. Applications of the FFT to the Spectral Analysis
and Restoration Problems

A. Classes of Measurement

Astronomical measurements amenable to analysis
by Fourier techniques fall into two categories:
1) data that display both correlation and randomness
such as the solar oscillations displayed by the Doppler
shifts of spectral lines, intensity fluctuations with
time, and intensity variations due to changes in fine
structure across the solar disk and 2) deterministic
data that appear to be repeatable such as scans of
astronomical spectra, interferograms, single photo-
graphs of solar fine structure, and scans of the solar
limb. In category 1 we wish to estimate the power
spectra of the solar process that causes the intensity
and velocity oscillations; whereas, in category 2 the
measurements require correction for linear, #ime
invariant effects that can be represented by a con-
volution integral.

In the following two sections, FFT techniques for
computing power spectra and for restoring measure-
ments will be discussed. The utility of the method
will be stressed in order to convince observers that
they can practically, and with some confidence,
reduce instrument effects and noise in their measure-
ments in an optimum way and thus recover as much
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of the stellar information as possible. The explanatory
figures to be shown are examples of solar measure-
ments made by the authors at Kitt Peak National
Observatory and Sacramento Peak Observatory.

B. Calculation of Power Spectra
1. The Unmodified Power Spectrum and Its Use

As we shall demonstrate, the raw power spectrum
of a measurement is essential for experiment diag-
nostics and the design of noise-suppression filters.
The raw power spectrum is immediately computed
from the discrete Fourier transform of the measure-
ment by the usual relation

P(sx) = F (s1) F ()% = F (s)kear + F(sk)%mag - (9)
This direct calculation is the alternative to the
common autocovariance approach, but the two
methods are equivalent as can be shown from the
power theorem (Parseval’s theorem). However, the
direct calculation using the FFT and Eq. (9) can be
performed much faster for long data sequences.

Besides the usual self-convolution method, the
mean lagged product

N—|n|
C(xn) =N‘1k2; F(wg) F oy + |2a)»  (10)

where
m=ndzforn=0,1,2,... N-1,

is easily computed by taking the inverse transform
of the raw power spectrum P(s), provided certain
precautions are taken. One must remember that the
entire mean lagged product for an N point measure-
ment is symmetric about y, = 0, and is composed of
2N — 1 values. In contrast, the symmetric power
spectrum computed by applying the FFT to the
same data will have only N values. Before an
unaliased C(y,) can be computed from the N point
power spectrum, thelength of the initial data sequence
must be at least doubled by extending it with values
of the sample mean. It is best to anticipate the need
for a correlation function and allow for its calculation
by routinely extending the set of sample values at the
beginning of the reduction. Figure (6) illustrates the
two alternate routes for calculation of the raw power
spectrum and the corresponding mean lagged product.

The two empirical functions, P(s) and C(y),
described above are related to the periodogram,
autocorrelation, and autocovariance function as fol-
lows.

Periodogram = N P (s;)

Autocorrelation = C(y,)/C (o)

Autocovariance = C(y,) when sample mean is

Zero.
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Fig. 6. A flow diagram showing the two routes for computing
power spectra and mean lagged products

Note that the calculation yields the biased form of the
correlation function. If the unbiased correlation,

Oltn) =¥y

N—|n|

kZ; F(xk)F(xk - lxnl) ’ (11)
is required; the weighting by the factor (N — |k})—*
must be performed separately. This weighting is a
correction for the finite length of the data sequence,
but it does increase the contribution of the most
unreliable values of the lagged product, i.e., those for
large lags. For comments on the use of biased and
unbiased autocovariance functions see Jenkins and
Watts (1968, p. 174).

The raw power spectrum is a very useful diag-
nostic tool because it reveals defects in the data that
can be difficult to detect and evaluate by direct
examination of the measurements. For example, the
power spectrum of a measurement will show any
spurious periodic interference such as the 30 Hz
frame rate of TV monitors located near photometers,
image motion due to motor and compressor vibra-
tions, ete. Low frequency problems due to electronic
drift and sky transparency changes will appear as an
increased “1/f” noise spectrum. Infrequent random
spikes or data “glitches” will raise the high frequency
end of the empirical spectrum. Even more important,
such preliminary spectral analysis immediately shows
the empirical relationship between the signal power
and noise power, and thus, allows the experimenter
to locate the frequency band in which significant
signal information is carried. The knowledge of the
usable signal spectrum then permits specification of
a numerical filter to preferentially suppress the noise.
In practice, use of a data window will give better
power spectra for diagnostic purposes. This technique
will be discussed in the next section under modified
power spectra.
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Fig. 7. A measurement of the photospheric velocity oscilla-

tions displayed by Doppler shifts of the solar Fe 1 line at

6290.974 A: (A) raw data and (B) filtered data. The observa-

tions were made with a fast spectrum scanner at Sacramento
Observatory on April 29, 1969

Consider the measurements of the quasi-periodic
solar signal shown in Fig. 7A. The raw power spec-
trum of this measurement is shown in Fig. 8. From
this empirical spectrum we see that the predominant
oscillations, those well removed from the origin, lie
in the frequency range from 0.0015 to 0.0045 Hz.
A band-pass filter with a cosine-bell shape in the
transform domain was chosen to preserve this band
but to totally eliminate all amplitudes at frequencies
above 0.0066 Hz and to strongly attenuate those
below 0.001 Hz. The result of this filtering is shown
in Fig. 7B where the modulated or wave-packet
character off the 300 second solar oscillations now
shows very clearly because the high frequency noise
and the low frequency drifts (or perhaps low fre-
quency solar oscillations) have been attenuated by
the numerical filtering.

Such filters are conceptually easier to specify and
apply in the transform domain than in the measure-
ment domain where they can be rather complicated
functions to be convolved with the data. Once the
desired frequency response is determined from the
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Fig. 8. The raw power spectrum of the unfiltered, 2.5 hour
sample of solar photospheric oscillations shown in Fig. 7A:
(A) the power spectrum from 0 to 0.1 Hz, and (B) the low
frequency end of the same power spectrum from 0 to 0.01 Hz

empirical power spectrum, the transform of the
measurement is multiplied by this response function;
and the filtered data is obtained immediately from
the inverse transformation of the data transform as
modified by the filter response function.

Band-pass filters such as the one used to obtain
the results in Fig. 7B must be used carefully, because
if the pass band is too narrow, the smoothed data
may not represent a real oscillation originating in the
star under study. To see how this problem may arise,
consider the application of a very narrow filter to a
pure noise signal. The filter will certainly smooth the
data and leave an oscillatory signal, but this smooth
wave-form is only one Fourier component of a broad-
band signal that has no principal resonance.

Much past effort has been devoted to physically
realizable filters which can be duplicated electronically.
The time or impulse response of such filters must be
asymmetric since future values of the signal are not
known. However, numerical filtering of recorded
data is not restricted to the physically realizable case,
and the impulse response can be symmetric. By
specifying that the filter’s amplitude response func-
tion be purely real in the transform domain, we insure
that the smearing or impulse response function will
be symmetric in the measurement domain. The use
of such symmetric filters will not skew the measure-
ments.
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2. Smoothed and Modified Power Spectra

The raw power spectrum is indeed the correct
spectrum for a particular measurement, but it may
be a very poor estimate of the average power spec-
trum underlying many such measurements, par-
ticularly when the basic signal displays random ampli-
tude and phase changes with time. This statistical
uncertainty in the power values computed from a
strictly random signal is quantitatively expressed by
the relation

g~ (LW,), 12)

where ¢ is the fractional variance of the power, L is
the length of the measured signal, and W, is the ap-
proximate width of the spectral resolution function
(see Blackman and Tukey, 1958, p. 21, Richards,
1967, p. 87). This approximate relation states that
the RMS uncertainty in the power values computed
from Eq. (9) is equal to the mean value of the power,
ie., for an unmodified power spectrum ¢2=1;
whenever, W, = L. If a more precise power esti-
mate is to be made from a given measurement, the
resolution width W, must increase. One must realize,
however, that the discouraging statistical uncertainty
given by Eq. (12) is derived for purely random signals
described by gaussian statistics and a flat, broadband
spectrum.

A related problem is that of spectral purity in the
computed power spectrum. The basic resolution
function has wings that decay as s—2; and since the
power spectrum is the result of convolution of this
slowly-decaying function with the true power spec-
trum, there is frequency mixing. Recent work with
the FFT emphasizes the data window method for
reducing this effect through apodization of the resolu-
tion function prior to spectral smoothing. In the
following paragraphs we shall discuss these two
aspects of power spectra calculation: 1) the use of
data windows and 2) three methods of spectral
smoothing. According to current usage, a modified
power spectrum is one computed directly from a data
sequence that has been multiplied with a data window
function, and a smoothed power spectrum is obtained
by filtering the spectrum itself to improve the statisti-
cal stability of the power estimate.

(@) Data Windows and Modified Power Spectra.

In Section II.B.5 we discussed the inconsistency
that arises because the effective signal has disconti-
nuities at the ends of the measurement. The remedy
was to apply a set of weights to the data sequence in
order to smooth the discontinuities before taking the
transform. The use of such a data window is to be

Astron. & Astrophys.

considered as a necessary part of any reduction
scheme that requires reliable transforms and power
spectra.

The choice of the window function is somewhat
arbitrary, but Bingham e¢ al. (1967) suggest use of a
cosine bell over the first and last 10 percent of the
data string. In the more general case where the cosine
bell is applied over short sections fL units wide at
both ends of the measurement, the weights for the
cosine bell are computed from the function

111~ cos(maffL)] 0= ==L

2

1 fLESx=Z L(1—f)

% [1 — cos(m(L — =)/{L)]
Ll-fisSz<L,

where L is the length of the data string and f is the
fraction of the length over which the data is masked
by the cosine bell.

The effect of such data modification on the trans-
form can be seen from the transform of this conti-
nuous window function, which is

sin(wLs(1 — cos (nfLs

() == nL(s D T— §2]f'Ls))’ - (14
The sine term in this transform is very similar to the
basic resolution function, and it fixes the width of the
central lobe; whereas, the cosine factor apodizes the
wings of the sine term. For example, notice that for
2fLs > 1, the transform decays as s—3 compared to
s~1 for an unmodified data set. As a rule of thumb,
the width of the central lobe will be (1 — f)~! in units
of the dimensionless frequency Ls. Similarly for the
cosine term, the frequency at which apodization
becomes effective is f-! or, conservatively, 2f-1.
Using these approximate rules, we see that a data
window designed to affect only the first and the last
10 percent of the data sequence produces a spectral
resolution function with a central lobe 1.1 resolution
units wide and an apodization starting 10 to 20
resolution units from the central maximum.

If we apply such a data window to a measurement,
and then compute the modified power spectrum; the
result is a high resolution spectrum with less leakage
than would be obtained with an unmodified data set.
As Bingham ef al. (1967) point out, the power spectra
of deterministic signals relatively free of random
effects may be adequately estimated by modified
power spectra alone; but when the measurement is
notse-like, and the uncertainty in the modified power
estimates is intolerable, we must also smooth the
modified power spectrum.

(13)
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(b) Smoothed Power Spectra.

The three methods for spectral smoothing are the
lag window technique, smoothing by direct convolu-
tion in the frequency domain, and segmental averag-
ing. Since Cooley efal. (1970b) discuss all three
methods and show examples, we will not make an
exhaustive analysis but only summarize the important
characteristics of the methods.

(1) The Lag Window Method

The standard lag window method described by
Blackman and Tukey (1958) was the most efficient
way to compute power spectra prior to the advent of
the FFT. In this approach, the empirical auto-
covariance function is computed directly from the
data sequence and then smoothly truncated by
multiplying it with a set of weights called a lag
window. The power spectrum is then obtained by
taking the cosine transform of this modified auto-
covariance function. Since this multiplicative process
in the measurement domain is equivalent to a con-
volution of the power spectrum with the transform
of the lag window, it results in a smoothing of the
power spectrum. The degree of smoothing varies
inversely with the maximum lag or truncation point
of the autocovariance: Ly,, = W; 1. The Blackman-
Tukey recipe (Blackman and Tukey, 1958, p. 21)
calls for maximum lags of ~10 percent of the total
measurement length. This 10 percent lag specification
comes from their requirement that the RMS un-
certainty ¢ in the power computed for a random
signal be ~ 1/3 of the average power, i.e., ¢ = 1/3 and
W= Ly in Eq. (12). The smoothed power
spectrum computed from such a recipe will have a
resolution width 10 times that of the raw periodogram,
and the statistical stability of the smoothed power
estimate will be increased 3 times for a pure whife
noise signal.

In the absence of the FFT, the computational
advantage of the standard lag window method for
small maximum lags is clear: the number of values
involved in the cosine transform of the autocovariance
function is much less than the number of data values.
However, the method suffers from the drawback
that the spectral resolution functions corresponding
to convenient lag windows have slowly decaying
wings. In some cases, the resolution function can have
appreciable side lobes and may take on negative
values. Thus, the use of simple lag windows can lead
to spurious peaks in the spectrum and even negative
power values because of leakage effects in the fre-
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Fig. 9. A flow diagram of the combined modification and lag
window smoothing process using the FFT

quency domain. Figure 9 illustrates the steps in the
application of the FFT to the lag window method.

(2) Smoothing by Direct Convolution

Since the FFT allows us to economically compute
the transform and the raw power spectrum for long
data sequences, we can bypass the calculation of
autocovariance functions and consider direct con-
volution of the modified periodogram as the smooth-
ing device. In this approach we can specify the
smoothing function to suit our needs, and thus avoid
leakage inherent to the lag window method. The
smoothing function is represented by a set of weights
whose sum must be unity in order to preservethe
area under the power spectrum being smoothed.

As an example of the convolution smoothing, we
can take the simple running mean over % points in the
modified power spectrum. Such an average over
11 points in the spectrum is statistically equivalent
to use of a 10 percent lag window although theleakage

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A%26A....13..169B&amp;db_key=AST

FT971AA © C -137 “I69B

182 J. W. Brault and O. R. White

MODIFICATION: SMOOTHING:

Direct Convolution with the
Spectral Window W(S)Spectral

Application of Data
Window W(x)p,,,

F(x)
represented by M
data points with

zero mean

Modified Power
e Spectrum

Multiply by
(X)Data

\ Pls) *W(S)Spectral

Modified and
Smoothed Power

Modified Data String
F'(x) Spectrum P(s)

Lengthen with
zeroes to
"N =2">M

Modified and
Lengthened
Data String

" F'(x)

I

Complex Transform
F'(s)

l F(s) F'(s)*

Modified Power
Spectrum at interval -
As = (NAx)™!

Fig. 10. A flow diagram of the combined modification and
direct smoothing method

characteristics are quite different. The lag window
and direct smoothing techniques will give identical
results if the weights for the lag window are the dis-
crete inverse transform of the spectral weights that
define the smoothing function in the frequency
domain. Figure 10 illustrates the sequence of opera-
tions in the direct smoothing method.

(3) Segmental Averaging

Spectral smoothing can also be performed by
dividing a long time series into several segments of
equal length, computing the power spectra for each
segment, and then averaging the set of spectra. This
technique is equivalent to use of an appropriate lag
window (see Richards, 1967, p. 86 and Welch, 1967,
p. 70). Spectral stability has been gained at the
expense of spectral resolution because the effective
spectral resolution width is now fixed by the short
segment lengths and not the longer duration of the
original time series.
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Fig. 11. A flow diagram of the segmental averaging technique
for smoothing power spectra

Cooley et al. (1970b) recommend that the segments
of the data sequence overlap by one-half of the
desired segment length. Such overlapping introduces
some correlation between the segments, but there is
a net gain in the statistical stability because the
number of spectra averaged together is doubled
relative to that without overlap. The spectral resolu-
tion function for this method has the same general
shape as in the lag window case: a strong central
lobe whose width is determined by the segment lengths
and long wings whose rate of decay is determined by
the shape of the data window applied to each segment.
These wings tend to have a small amplitude lobe
structure, but they cannot take on negative values as
is possible for certain lag windows. Figure 11 shows
the various steps in computing the smoothed power
spectrum by the segmental averaging method.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A%26A....13..169B&amp;db_key=AST

FT971AA © C -137 “I69B

Vol. 13, No. 2, 1971

(4) Comparison of the Three Methods
for Spectral Smoothing

Cooley et al. (1970b) show that for a gaussian
white noise signal the three smoothing techniques are
statistically equivalent when their smearing widths
are the same in the frequency domain. As guides for
this equivalence, the approximate smearing widths
to be compared for the lag window, direct smoothing,
and segmental averaging methods are the reciprocal
of the maximum lag (W, ~ (Lyay)~?), the width of
the smoothing function at the half power points, and
the reciprocal of the segment length (W, ~ (Lgeg)™?),
respectively.

More significant differences lie in the shapes of
their spectral resolution functions, since the shape
determines the degree of leakage and frequency range
over which it occurs. In the direct smoothing case,
the smoothing function can be chosen to give a more
uniform frequency mixing over a narrower frequency
band than for the other two methods, but the shape
of any narrow lines in the power spectrum will also
be distorted more by concentrated, flat-topped
functions such as the running mean.

The more obvious differences are practical ones.
Direct smoothing and segmental averaging are com-
putationally more efficient for long data sequences
because the FFT can be used. Segmental averaging
has the added advantage that the spectra of suc-
cessive segments can be compared to give an indica-
tion of the stationarity of the measurement with time,
ie., is the underlying power spectrum obviously
changing during the measurement process ?

The degree of smoothing required in any particular
case still remains unspecified because it depends so
strongly on the statistical character of the measured
signal. This uncertainty leaves the theory of empirical
spectral analysis in a rather unsatisfactory state, but
we are not prepared to discuss the problem of signal
classification. However, the use of a data window to
reduce leakage plus the option of using either the lag
window, direct smoothing, or segmental averaging
method for spectral smoothing gives a set of flexible,
defensible tools for computing power spectra.

C. Restoration of Smeared Data

In the following discussion, we consider in some
algebraic detail the optimum restoration process.
Since optimum filtering and restoration are not as
well known nor widely-discussed as Fourier analysis
and power spectra calculation, we feel that a more
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mathematical discussion is necessary for the reader
to appreciate the basis for this technique.

1. Optimum Restoration

Many physical observations are degraded by
smearing effects that can be represented by a con-
volution integral

S@= [ To) 4@y dy=T@s+ 4@, (15)

where T (y) is the true signal, S (z) the smeared signal
as observed in the absence of noise, and A (x) is the
smearing function or apparatus response function.
The smearing of spectral lines by instruments with
finite resolution and the two-dimensional smearing
of solar fine structure by atmospheric turbulence and
telescopes of finite aperture are perhaps the most
common examples of the problem. What we now seek
is the best possible means of correcting for such
effects.

‘We begin by noting that in the transform domain,
the convolution becomes a simple product:

S(s)=T(s)- A(s). (16)

These relations are illustrated in Fig. 12A, which
shows the basic convolution process as seen in both
the measurement and transform domains. The
example is that of a single noise-free spectral line
smeared by a typical apparatus function. In the
transform domain, the restoration is trivial and exact
as long as A (s)-! exists for all frequencies:

RBis)=8@)-A@s)1=1T(). (17)

This simple restoration process is shown in Fig. 12B.
In the presence of the inevitable noise associated

with all measurements, however, the simple solution

indicated by Eq. (17) proves to be disastrous, as

demonstrated in the next figure. Figure 13A shows

the addition of noise to the smeared profile and its

effect on both the observed profile and its transform.
In this case the observed distribution is

O(x) =8(x)+ N(x), (18)
where N (s) is additive random noise. The result of
restoration in the transform domain is then

Ry(s)=0()/A(s)=T(s) + N(s)/A(s), (19)

which produces a very noisy restored profile Ry(s).
The poor results obtained by this naive approach are
thus traced to the strong amplification of high fre-
quency noise components during this inverse opera-
tion as illustrated in Fig. 13B.
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Fig. 12. Ilustrations of (A) the convolution process as seen in both domains and (B) the simple Fourier restoration in the
absence of noise

In fact, a close examination of the power spectrum
of conservatively-sampled data invariably reveals
that the highest frequency components contain
virtually no information, and are essentially pure
noise. It seems intuitively obvious that if the restored
data is to be as close as possible to the true distribu-
tion, such high frequency components due to noise
must be suppressed rather than enhanced, while
those components that contain much more signal than
noise should be rather completely restored. Subject
to some very reasonable assumptions, these ideas
lead directly to the optimum filter. The following
development is intended to be illustrative rather than
rigorous ; more formal treatments may be found Wiener
(1949), Middleton (1960, p. 697) and Bracewell (1958).

Essentially, three assumptions are necessary:

(i) The correction for the presence of noise is to
take the form of a filter; that is, the various frequency

components will be weighted in some optimum way:

0(s)
E(s)= 20 &(s)
where @ (s) is the optimum filter that gives the ,,best*
restored profile. Qur approach will yield filter func-
tions that are real in both domains; hence, they are
not physically realizable as real-time electronic
devices. Middleton (1960), p. 697, gives a more
general discussion of the optimum filter with and
without the constraint of physical realizability. Also
implicit in our approach is the belief that the signal
and the noise have fundamentally different frequency
distributions.
(ii) The optimum filter must result in the closest
smooth approach of R (x) to T'(x) in the root-mean-
square error sense:

J [T (x) — R(x)]?dz = a minimum .

(20)

@
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A. ACTUAL OBSERVATION INCLUDING NOISE Smeared

Profile

MEASUREMENT ~ DOMAIN

- —

Random Observed
Noise Profile

TRANSFORM  DOMAIN

Log HM W vm WM‘W‘M“
P
s — s —> s —>
B. SIMPLE RESTORATION WITH NOISE :
Observed Restoring Restoration + | Noisy
Transform Function Amplified Noise 1 Restored Profile
I
|
I
FT
= —_—
4 I
Log ! 1
P !
|
s —> s —> s —> 1 X —>
TRANSFORM  DOMAIN : MEASUREMENT DOMAIN

Fig. 13. Illustrations of (A) the effect of noise on the observed profile and its transform, and (B) the disastrous result of noise
amplification in a simple restoration

(iii) The noise is random and uncorrelated with
the signal. This assumption, though not essential, is
usually valid and simplifies the problem.

The power theorem tells us that we may treat the
RMS error in either domain:

[IT@) ~ R@)Pde=[|T() - B@)2ds. (22)

Hence the problem is reduced to finding the filter
@ (s) that makes

f]T(s)—E(s)lzds=/‘T(s)— 06) &s)

2
10 ds (23)

a minimum.
Using Egs. (15) and (18), we find that the residual
error ¢ is

e=T@—R®=T@—sz@+MM§8
=ﬂwu—@m—§8¢m. (24)

18 Astron. & Astrophys., Vol. 13

The error is now seen to be composed of two parts,
the first due to incomplete restoration because of the
presence of the filter, and the second the wusual
enhanced noise term now reduced by the filter. If we
accept the third assumption above, the two terms
are uncorrelated; and hence, on the average, their
cross product will contribute nothing to the sum of
squares. We are then left with finding & (s) such that

fsz ds = f {|T(s)]2(l —B(s)2+ 1}—8 : @2(8)} ds
(25)

= g minimum.

This is a standard calculus of variations problem
whose solution is given by

2 ¥ P
ab(s) 0=-2[1-3@)]|T@E)P+28() i
(26)
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A. APPLICATION OF THE OPTIMUM FILTER Observed

Profile

TRANSFORM ~ DOMAIN

Optimum Filtered
Filter Observation

TRANSFORM  DOMAIN

Log
P
s — s — s —>
B. OPTIMUM RESTORATION WITH NOISE :
Filtered Restoring Quiet i Restored
Transform Function Restoration I Profile
|
1
I
FT
= —_—
1
Log ! ?
P !
I
s —> s —> s —> | X —>
I
1

MEASUREMENT DOMAIN

Fig. 14. Illustrations of (A) the noise reduction provided by the optimum filter, and (B) the resulting quiet restoration

or
Ble)=— T@OA@E __ _ Ps(o)

1T @) A+ [N Psls) + Pa(s)
where Pg(s) and Py(s) are the power spectra of the
smeared signal and the noise. The optimum filter is
thus seen to be determined only by the power of the
smeared signal (ie., that which would be observed
in the absence of noise) and the actual noise power;
there is no explicit dependence on the apparatus
function. Also note that this optimum filter function
is real and even in both domains.

The derivation of the filter function does not
actually need to be connected to the restoration prob-
lem at all. The same answer is obtained by asking
which filter, when applied to the observations O (z),
gives the best RMS approximation to the noise-free
signal S(z). Optimum restoration is thus nothing
more than optimum filtering followed by straight-
forward Fourier restoration (see Fig. 14).

(27)

The optimum restoration can also be formulated
in terms of a linear operator to be convolved directly
with the observed data. In Fig. 14A we show this
convolution process for optimum filtering alone, but
by combining the filter and restoration functions the
complete optimum restoration operator can be found
for the convolution approach. Rybicki and Harrison
(Harrison, 1968) are the principal proponents of the
direct linear-operator technique, and they have suc-
cessfully applied it to the restoration of both stellar
and solar spectra.

The complete dependence of the optimum filter
on observed quantities also indicates why the tradi-
tional Burger-van Cittert iterative restoration tech-
nique (see Burger etal., 1932, 1933) should be
avoided. Using this technique, the resulting transform
of the restoration operator at the end of # iterations is

Bs)= O(s)J z';' L—-A4A@E)Yy. (28)
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A. POWER MODELS

B. OPTIMUM FILTER

cutoff
frequency

L1

Log
P

Fig. 15. Illustration of (A) how the smooth power models of the signal and noise are determined by the least squares fitting
of the computed power spectrum of the data, and then used to construct the optimum filter as shown in (B) )

The bracketed quantity is seen to be the first (n + 1)
terms of a geometric progression, so we may immedia-
tely write

B(s) — é_(f)_ 1 — n+1

B =7 -0 -d60ry. @)
Comparing this result with Eq. (20), we see that this
process is formally equivalent to the use of a filter of
the form

Bs)=1-[1-Ad@E)r+L. (30)

As a filter, this leaves much to be desired. As n be-
comes large, the term in brackets tends to vanish at
all frequencies where A (s) is significantly greater
than zero. In a properly designed system, this means
all frequencies up to the cut-off frequency. The net
result is that @ (s) approaches unity at all frequencies;
i.e., no filtering at all. We are thus back to the un-
happy situation of Fig. 13B. This is obviously un-
satisfactory, and the usual remedy is to stop the
process at some relatively small value of », thus
achieving some filtering action. Unlike the optimum
filter, however, this filter is independent of observed
quantities and depends only on the apparatus func-
tion. The all-important properties of the observed
distribution thus enter only subjectively and indi-
rectly through the choice of the number of iterations n.

2. Practical Realization of the Optimum Filter

The realization of the filter represented by Eq. (27)
obviously presents a problem, since it involves both
the quantity S(s) we are attempting to measure and
the noise N (s) that is interferring with that measure-

13*

ment, What saves us is the fact that this is an
optimum filter; therefore, small deviations from the
true filter shape should result only in second order
increases in the error. Consequently, it is usually
adequate to replace the actual complicated signal
and noise power spectra by smooth, simple models
involving only a few parameters. If Pg (s; ay, as, - - .)
represents a model of the signal power with para-
meters a,, a,, ete., and Py (s; by, by . . .) represents
a model of the noise power with parameters b,, b,,
etc., we use a fitting procedure to adjust the a’s and
b’s until

Pioa(5) = Pi(s) + Pl (s) (31)

is a good smooth approximation to Py, Having
thus modelled both the signal and noise powers, we
take the filter to be

d(s)

as shown in Fig. 15.

The choice of a power model depends somewhat
on the type of data involved, and one should have
considerable familiarity with empirical power spectra
typically produced by the source and instrument.
Every available piece of physical information should
be used in setting up the model. Nonetheless, there
are a few helpful generalizations.

(i) In most cases, a constant power is an adequate
model of the noise power. Such “white’” noise is typi-
cal of the statistical fluctuations in photon flux that
are the dominant noise source in many measure-
ments, and it is also characteristic of amplifiers

Pi(s)

EEACES ) (32)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A%26A....13..169B&amp;db_key=AST

FT971AA © C -137 “I69B

188 J. W. Brault and O. R. White

operated at reasonably high frequencies. For systems
operated at very low frequencies, a noise power pro-
portional to 1/s may be more appropriate.

(ii) The simplest multi-line spectra, such as those
produced by typical laboratory emission sources,
consist of a number of lines with essentially identical
width and shape, and the shape is usually well rep-
resented by a Voigt function (van de Hulst et al.,
1947; Elste, 1953). The smoothed power spectra of
such sources can be represented very well by a Voigt
transform of the form

P,=Pyexp[—2)/2aks — k*s?].  (33)

The parameters o and % that correspond to the damp-
ing ratio and the Doppler width may often be speci-
fied from the known properties of the source, which
leaves only P, to be determined from the observations.

(iii) The most complex case of all is typified by
stellar absorption spectra, which contain randomly-
spaced lines of widely differing width, damping and
saturation. Such spectra are especially troublesome
when narrow telluric lines are also involved. Even for
such cases, however, a power model consisting of two
Voigt transforms of different widths will usually
suffice.

A smooth model of the power spectrum applicable
to case (iii) is in regular use at Kitt Peak, but the
number of the free parameters is reduced to 3 by
arbitrarily fixing the damping ratios and by making
the second transform twice as wide as the first. Using
a constant for the noise term, we then have a 4-para-
meter model to be fitted to the observed power spec-
trum:

P;A)tal(s;Po’Pl:k’Pn)

= Pyexp(—2 Véoc ks — k? s%)
+ P, exp [—2V§a(k/2) s — (k/2)2s%] + Py. (34)

In order to emphasize the important region where the
signal power equals the noise power, we determine
the parameters by minimizing the error in the ratio
Povs ()] Piotar ():

P°b’(8) 2 .
(P — 1) = minimum (35)

3. Treatment of the Data

Before any of the operations involved in model-
ling the power spectrum or restoring the data are
performed, it is absolutely essential that an appro-
priate data window be applied to the observations
as described in Section IT.B.5. If this is not done, the

Astron. & Astrophys.

true shape of the power spectrum in the middle and
high frequencies will be hidden by leakage from other
parts of the spectrum. As a practical rule the end-
region masking should be applied over 2 to 4 charac-
teristic line-widths at both ends of the spectral scan.
The cosine bell (see Section IV.B.2, Eq. 13) is a
convenient functional form for the data window. The
effect of masking cannot be completely removed from
the restored data because of the band-width restric-
tion; therefore, the data within the masked end-
regions should not be used in further analysis.

4. Treatment of the Apparatus Function

Two important properties of a convolution must
be recognized in the handling of the apparatus func-
tion (see Bracewell, 1965, p. 111):

(i) The area under a convolution is equal to the
product of the areas of the convolved functions.

(ii) The centroid of the convolution is equal to the
sum of the centroids of the functions being convolved.

The restoration process, of course, produces the
exact opposite effects. To avoid wavelength shifts
and scale changes, the apparatus function should be
normalized to unit area and shifted until its centroid
coincides with the coordinate origin. The procedure
we commonly use is to find the centroid (and hence
the needed shift) in the measurement domain, take
the transform, and apply the shift theorem in the
transform domain. Dividing all values of the trans-
form by the zero-frequency term then completes the
area normalization, and the transform of the ap-
paratus function is ready for use in restoration.

Occasionally the apparatus function transform
will be zero at some frequency, usually due to the
filtering action of an optical aperture. Since this
transform appears in the denominator of the restora-
tion Eq. (20), the noise at the nodal frequency will
be enormously amplified. This practical problem may
be avoided by setting an upper bound to the allowed
amplification, or by limiting the range of the restora-
tion to frequencies below the nodal frequency.

5. Applicability to Photon-Counting Photometers

At first glance, a photon-counting system appears
to be fundamentally different from an analog photo-
meter because it cannot contain an analog filter to
limit the band-width of the measurement. In a photon
counter, the noise suppression is achieved instead by
integrating over a time interval z. Such integration
is equivalent to a filter function of the form sin (nzs)/ms
in the frequency domain. Because of the slow decay
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of this function, many aliases contribute to the noise
power at a given frequency. Although such aliasing
appears to be bad, the resultant sum gives a flat noise
spectrum that is equivalent to that obtained by
filtering the noise signal with an ideal filter which has
its cutoff at the Nyquist frequency. Consequently, as
long as the signal is over-sampled, the optimum
restoration technique described previously is directly
applicable to photon-counting measurements.

V. Conclusions

If a truly general conclusion is to be drawn from
our experience with Fourier analysis and restoration
of measurements, it is that such processes are
strongly dependent on the characteristics of the
measured signal. The blind application of recipes,
which by their very nature tend to be conservative,
can then give compromised or even poor results. One
must examine all of the available physical properties
of the measurement, i.e., the data itself, the modified
power spectrum, and the known properties of the
instrument and source, before any technique can be
applied intelligently. The Fast Fourier Transform
proves to be a useful tool for efficiently making these
examinations of the data as well as for performing the
final analysis and restoration.
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