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1. Introduction

Wavelet analysis is becoming a common tool for

analyzing localized variations of power within a time

series. By decomposing a time series into time–fre-

quency space, one is able to determine both the domi-

nant modes of variability and how those modes vary

in time. The wavelet transform has been used for nu-

merous studies in geophysics, including tropical con-

vection (Weng and Lau 1994), the El Niño–Southern

Oscillation (ENSO; Gu and Philander 1995; Wang and

Wang 1996), atmospheric cold fronts (Gamage and

Blumen 1993), central England temperature (Baliunas

et al. 1997), the dispersion of ocean waves (Meyers et

al. 1993), wave growth and breaking (Liu 1994), and

coherent structures in turbulent flows (Farge 1992). A

complete description of geophysical applications can

be found in Foufoula-Georgiou and Kumar (1995),

while a theoretical treatment of wavelet analysis is

given in Daubechies (1992).

Unfortunately, many studies using wavelet analy-

sis have suffered from an apparent lack of quantita-

tive results. The wavelet transform has been regarded

by many as an interesting diversion that produces col-

orful pictures, yet purely qualitative results. This mis-

conception is in some sense the fault of wavelet analy-

sis itself, as it involves a transform from a one-dimen-

sional time series (or frequency spectrum) to a diffuse

two-dimensional time–frequency image. This diffuse-

ness has been exacerbated by the use of arbitrary nor-

malizations and the lack of statistical significance tests.

In Lau and Weng (1995), an excellent introduction

to wavelet analysis is provided. Their paper, however,

did not provide all of the essential details necessary

for wavelet analysis and avoided the issue of statisti-

cal significance.

The purpose of this paper is to provide an easy-to-

use wavelet analysis toolkit, including statistical sig-

nificance testing. The consistent use of examples of
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ENSO provides a substantive addition to

the ENSO literature. In particular, the

statistical significance testing allows

greater confidence in the previous wave-

let-based ENSO results of Wang and

Wang (1996). The use of new datasets

with longer time series permits a more

robust classification of interdecadal

changes in ENSO variance.

The first section describes the datasets

used for the examples. Section 3 de-

scribes the method of wavelet analysis

using discrete notation. This includes a

discussion of the inherent limitations of

the windowed Fourier transform (WFT),

the definition of the wavelet transform,

the choice of a wavelet basis function,

edge effects due to finite-length time se-

ries, the relationship between wavelet

scale and Fourier period, and time series

reconstruction. Section 4 presents the

theoretical wavelet spectra for both

white-noise and red-noise processes.

These theoretical spectra are compared to

Monte Carlo results and are used to es-

tablish significance levels and confi-

dence intervals for the wavelet power

spectrum. Section 5 describes time or

scale averaging to increase significance

levels and confidence intervals. Section

6 describes other wavelet applications

such as filtering, the power Hovmöller,

cross-wavelet spectra, and wavelet co-

herence. The summary contains a step-

by-step guide to wavelet analysis.

2. Data

Several time series will be used for examples of

wavelet analysis. These include the Niño3 sea surface

temperature (SST) used as a measure of the amplitude

of the El Niño–Southern Oscillation (ENSO). The

Niño3 SST index is defined as the seasonal SST av-

eraged over the central Pacific (5°S–5°N, 90°–

150°W). Data for 1871–1996 are from an area aver-

age of the U.K. Meteorological Office GISST2.3

(Rayner et al. 1996), while data for January–June 1997

are from the Climate Prediction Center (CPC) opti-

mally interpolated Niño3 SST index (courtesy of D.

Garrett at CPC, NOAA). The seasonal means for the

entire record have been removed to define an anomaly

time series. The Niño3 SST is shown in the top plot

of Fig. 1a.

Gridded sea level pressure (SLP) data is from the

UKMO/CSIRO historical GMSLP2.1f (courtesy of D.

Parker and T. Basnett, Hadley Centre for Climate Pre-

diction and Research, UKMO). The data is on a 5°

global grid, with monthly resolution from January

1871 to December 1994. Anomaly time series have

been constructed by removing the first three harmon-

ics of the annual cycle (periods of 365.25, 182.625, and

121.75 days) using a least-squares fit.

The Southern Oscillation index is derived from the

GMSLP2.1f and is defined as the seasonally averaged

pressure difference between the eastern Pacific (20°S,

150°W) and the western Pacific (10°S, 130°E).
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FIG. 1. (a) The Niño3 SST time series used for the wavelet analysis. (b) The

local wavelet power spectrum of (a) using the Morlet wavelet, normalized by 1/

σ2 (σ2 = 0.54°C2). The left axis is the Fourier period (in yr) corresponding to the

wavelet scale on the right axis. The bottom axis is time (yr). The shaded contours

are at normalized variances of 1, 2, 5, and 10. The thick contour encloses regions

of greater than 95% confidence for a red-noise process with a lag-1 coefficient of

0.72. Cross-hatched regions on either end indicate the “cone of influence,” where

edge effects become important. (c) Same as (b) but using the real-valued Mexican

hat wavelet (derivative of a Gaussian; DOG m = 2). The shaded contour is at

normalized variance of 2.0.
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3. Wavelet analysis

This section describes the method of wavelet analy-

sis, includes a discussion of different wavelet func-

tions, and gives details for the analysis of the wavelet

power spectrum. Results in this section are adapted to

discrete notation from the continuous formulas given

in Daubechies (1990). Practical details in applying

wavelet analysis are taken from Farge (1992), Weng

and Lau (1994), and Meyers et al. (1993). Each sec-

tion is illustrated with examples using the Niño3 SST.

a. Windowed Fourier transform

The WFT represents one analysis tool for extract-

ing local-frequency information from a signal. The

Fourier transform is performed on a sliding segment

of length T from a time series of time step δt and total

length Nδt, thus returning frequencies from T−1 to

(2δt)−1 at each time step. The segments can be win-

dowed with an arbitrary function such as a boxcar (no

smoothing) or a Gaussian window (Kaiser 1994).

As discussed by Kaiser (1994), the WFT represents

an inaccurate and inefficient method of time–fre-

quency localization, as it imposes a scale or “response

interval” T into the analysis. The inaccuracy arises

from the aliasing of high- and low-frequency compo-

nents that do not fall within the frequency range of the

window. The inefficiency comes from the T/(2δt) fre-

quencies, which must be analyzed at each time step,

regardless of the window size or the dominant frequen-

cies present. In addition, several window lengths must

usually be analyzed to determine the most appropri-

ate choice. For analyses where a predetermined scal-

ing may not be appropriate because of a wide range

of dominant frequencies, a method of time–frequency

localization that is scale independent, such as wave-

let analysis, should be employed.

b. Wavelet transform

The wavelet transform can be used to analyze time

series that contain nonstationary power at many dif-

ferent frequencies (Daubechies 1990). Assume that

one has a time series, x
n
, with equal time spacing δt

and n = 0 … N − 1. Also assume that one has a wave-

let function, ψ
0
(η), that depends on a nondimensional

“time” parameter η. To be “admissible” as a wavelet,

this function must have zero mean and be localized in

both time and frequency space (Farge 1992). An ex-

ample is the Morlet wavelet, consisting of a plane

wave modulated by a Gaussian:

ψ η π ω η η
0

1 4 20
2( ) = − −

e e
i , (1)

where ω
0
 is the nondimensional frequency, here taken

to be 6 to satisfy the admissibility condition (Farge

1992). This wavelet is shown in Fig. 2a.

The term “wavelet function” is used generically to

refer to either orthogonal or nonorthogonal wavelets.

The term “wavelet basis” refers only to an orthogo-

nal set of functions. The use of an orthogonal basis

implies the use of the discrete wavelet transform,

while a nonorthogonal wavelet function can be used
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FIG. 2. Four different wavelet bases, from Table 1. The plots

on the left give the real part (solid) and imaginary part (dashed)

for the wavelets in the time domain. The plots on the right give

the corresponding wavelets in the frequency domain. For plotting

purposes, the scale was chosen to be s = 10δt. (a) Morlet, (b) Paul

(m = 4), (c) Mexican hat (DOG m = 2), and (d) DOG (m = 6).



64 Vol. 79, No. 1, January 1998

with either the discrete or the continuous wavelet

transform (Farge 1992). In this paper, only the con-

tinuous transform is used, although all of the results

for significance testing, smoothing in time and scale,

and cross wavelets are applicable to the discrete wave-

let transform.

The continuous wavelet transform of a discrete se-

quence x
n
 is defined as the convolution of x

n
 with a

scaled and translated version of ψ
0
(η):

W s x
n n t

s
n n

n

N

( ) = ∗
′ −( )







′

′=

−

∑ ψ
δ

0

1

, (2)

where the (*) indicates the complex conjugate. By

varying the wavelet scale s and translating along the

localized time index n, one can construct a picture

showing both the amplitude of any features versus the

scale and how this amplitude varies with time. The

subscript 0 on ψ has been dropped to indicate that this

ψ has also been normalized (see next section). Al-

though it is possible to calculate the wavelet transform

using (2), it is considerably faster to do the calcula-

tions in Fourier space.

To approximate the continuous wavelet transform,

the convolution (2) should be done N times for each

scale, where N is the number of points in the time se-

ries (Kaiser 1994). (The choice of doing all N convo-

lutions is arbitrary, and one could choose a smaller

number, say by skipping every other point in n.) By

choosing N points, the convolution theorem allows us

do all N convolutions simultaneously in Fourier space

using a discrete Fourier transform (DFT). The DFT

of x
n
 is

x̂
N

x ek n
ikn N

n

N

= −

=

−

∑1 2

0

1
π

, (3)

where k = 0 … N − 1 is the frequency index. In the

continuous limit, the Fourier transform of a function

ψ(t/s) is given by ψ$ (sω). By the convolution theorem,

the wavelet transform is the inverse Fourier transform

of the product:

W s x s en k k

i n t

k

N

k( ) = ∗( )
=

−

∑ ˆ ψ̂ ω ω δ

0

1

, (4)

where the angular frequency is defined as

ω

π
δ
π
δ

k

k

N t
k

N

k

N t
k

N
=

≤

− >










2

2
2

2

:

:
. (5)

Using (4) and a standard Fourier transform routine, one

can calculate the continuous wavelet transform (for a

given s) at all n simultaneously and efficiently.

c. Normalization

To ensure that the wavelet transforms (4) at each

scale s are directly comparable to each other and to the

transforms of other time series, the wavelet function

at each scale s is normalized to have unit energy:

ˆ ˆψ ω
π
δ

ψ ωs
s

t
sk k( ) =







( )2
1 2

0 . (6)

Examples of different wavelet functions are given in

Table 1 and illustrated in Fig. 2. Each of the unscaled

ψ$
0
 are defined in Table 1 to have

ˆ ;ψ ω ω0

2
1′( ) ′ =

−∞

+∞

∫ d

that is, they have been normalized to have unit energy.

Using these normalizations, at each scale s one has

ψ̂ ωs Nk

k

N

( ) =
=

−

∑ 2

0

1

, (7)

where N is the number of points. Thus, the wavelet

transform is weighted only by the amplitude of the

Fourier coefficients x$
k
 and not by the wavelet function.

If one is using the convolution formula (2), the nor-

malization is

ψ
δ δ

ψ
δ′ −( )







 = 





′ −( )









n n t

s

t

s

n n t

s

1 2

0 , (8)

where ψ
0
(η) is normalized to have unit energy.

d. Wavelet power spectrum

Because the wavelet function ψ(η) is in general

complex, the wavelet transform W
n
(s) is also complex.

The transform can then be divided into the real part,
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ℜ{W
n
(s)}, and imaginary part, ℑ{W

n
(s)}, or ampli-

tude, |W
n
(s)|, and phase, tan−1[ℑ{W

n
(s)}/ℜ{W

n
(s)}]. Fi-

nally, one can define the wavelet power spectrum as

|W
n
(s)|2. For real-valued wavelet functions such as the

DOGs (derivatives of a Gaussian) the imaginary part

is zero and the phase is undefined.

To make it easier to compare different wavelet

power spectra, it is desirable to find a common nor-

malization for the wavelet spectrum. Using the nor-

malization in (6), and referring to (4), the expectation

value for |W
n
(s)|2 is equal to N times the expectation

value for |x$
k
|2. For a white-noise time series, this ex-

pectation value is σ2/N, where σ2 is the variance. Thus,

for a white-noise process, the expectation value for the

wavelet transform is |W
n
(s)|2 = σ2 at all n and s.

Figure 1b shows the normalized wavelet power

spectrum, |W
n
(s)|2/σ2, for the Niño3 SST time series.

The normalization by 1/σ2 gives a measure of the

power relative to white noise. In Fig. 1b, most of the

power is concentrated within the ENSO band of 2–8

yr, although there is appreciable power at longer peri-

ods. The 2–8-yr band for ENSO agrees with other stud-

ies (Trenberth 1976) and is also seen in the Fourier

spectrum in Fig. 3. With wavelet analysis, one can see

variations in the frequency of occurrence and ampli-

tude of El Niño (warm) and La Niña (cold) events.

During 1875–1920 and 1960–90 there were many

warm and cold events of large amplitude, while dur-

ing 1920–60 there were few events (Torrence and

Webster 1997). From 1875–1910, there was a slight

shift from a period near 4 yr to a period closer to 2 yr,

while from 1960–90 the shift is from shorter to longer

periods.

These results are similar to those of Wang and

Wang (1996), who used both wavelet and waveform

analysis on ENSO indices derived from the Compre-

hensive Ocean–Atmosphere Data Set (COADS)

dataset. Wang and Wang’s analysis showed reduced

wavelet power before 1950, especially 1875–1920. The

reduced power is possibly due to the sparseness and de-

creased reliability of the pre-1950 COADS data (Folland

et al. 1984). With the GISST2.3 data, the wavelet trans-

form of Niño3 SST in Fig. 1b shows that the pre-1920

period has equal power to the post-1960 period.

TABLE 1. Three wavelet basis functions and their properties. Constant factors for ψ
0
 and ψ$

0
 ensure a total energy of unity.

e-folding Fourier

Name ψ
0
(η) ψ∧

0
(sω) time τ

s
wavelength λ

Morlet π ω η η− −1 4 20
2

e e
i π ω ω ω− − −( )( )1 4 20

2

H e
s

2s

4

20 0
2

π

ω ω

s

+ +
(ω

0
 = frequency)

Paul
2

2
1

1
m m

mi m

m
i

!

!π
η

( )
−( )− +( ) 2

2 1

m
m s

m m
H s e

−( )
( )( ) −

!
ω ω ω

s 2
4

2 1

πs

m +
(m = order)

DOG

−( )

+





( )
+

−1

1

2

1
22

m m

m

m

d

d
e

Γ
η

η − i

m

s e
m

m s

Γ +





( ) −( )

1

2

2
2ω ω

2s

2

1

2

πs

m +
(m = derivative)

H(ω) = Heaviside step function, H(ω) = 1 if ω > 0, H(ω) = 0 otherwise.

DOG = derivative of a Gaussian; m = 2 is the Marr or Mexican hat wavelet.
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e. Wavelet functions

One criticism of wavelet analysis is the arbitrary

choice of the wavelet function, ψ
0
(η). (It should be

noted that the same arbitrary choice is made in using

one of the more traditional transforms such as the Fou-

rier, Bessel, Legendre, etc.) In choosing the wavelet

function, there are several factors which should be

considered (for more discussion see Farge 1992).

1) Orthogonal or nonorthogonal. In orthogonal

wavelet analysis, the number of convolutions at

each scale is proportional to the width of the wave-

let basis at that scale. This produces a wavelet spec-

trum that contains discrete “blocks” of wavelet

power and is useful for signal processing as it gives

the most compact representation of the signal. Un-

fortunately for time series analysis, an aperiodic

shift in the time series produces a different wave-

let spectrum. Conversely, a nonorthogonal analy-

sis (such as used in this study) is highly redundant

at large scales, where the wavelet spectrum at ad-

jacent times is highly correlated. The nonorthog-

onal transform is useful for time series analysis,

where smooth, continuous variations in wavelet

amplitude are expected.

2) Complex or real. A complex wavelet function will

return information about both amplitude and phase

and is better adapted for capturing oscillatory be-

havior. A real wavelet function returns only a

single component and can be used to isolate peaks

or discontinuities.

3) Width. For concreteness, the width of a wavelet

function is defined here as the e-folding time of the

wavelet amplitude. The resolution of a wavelet

function is determined by the balance between the

width in real space and the width in Fourier space.

A narrow (in time) function will have good time

resolution but poor frequency resolution, while a

broad function will have poor time resolution, yet

good frequency resolution.

4) Shape. The wavelet function should reflect the type

of features present in the time series. For time se-

ries with sharp jumps or steps, one would choose

a boxcar-like function such as the Harr, while for

smoothly varying time series one would choose a

smooth function such as a damped cosine. If one

is primarily interested in wavelet power spectra,

then the choice of wavelet function is not critical,

and one function will give the same qualitative

results as another (see discussion of Fig. 1 below).

Four common nonorthogonal wavelet functions are

given in Table 1. The Morlet and Paul wavelets are

both complex, while the DOGs are real valued. Pic-

tures of these wavelet in both the time and frequency

domain are shown in Fig. 2. Many other types of wave-

lets exist, such as the Haar and Daubechies, most of

which are used for orthogonal wavelet analysis (e.g.,

Weng and Lau 1994; Mak 1995; Lindsay et al. 1996).

For more examples of wavelet bases and functions, see

Kaiser (1994).

For comparison, Fig. 1c shows the same analysis

as in 1b but using the Mexican hat wavelet (DOG,

m = 2) rather than the Morlet. The most noticeable dif-

ference is the fine scale structure using the Mexican

hat. This is because the Mexican hat is real valued and

captures both the positive and negative oscillations of

the time series as separate peaks in wavelet power. The

Morlet wavelet is both complex and contains more

oscillations than the Mexican hat, and hence the wave-

let power combines both positive and negative peaks

into a single broad peak. A plot of the real or imagi-

nary part of W
n
(s) using the Morlet would produce a

plot similar to Fig. 1c. Overall, the same features ap-

pear in both plots, approximately at the same locations,

and with the same power. Comparing Figs. 2a and 2c,

the Mexican hat is narrower in time-space, yet broader

in spectral-space than the Morlet. Thus, in Fig. 1c, the

0.51248163264
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FIG. 3. Fourier power spectrum of Niño3 SST (solid),

normalized by N/(2σ2). The lower dashed line is the mean red-

noise spectrum from (16) assuming a lag-1 of α = 0.72. The upper

dashed line is the 95% confidence spectrum.
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peaks appear very sharp in the time direction, yet are

more elongated in the scale direction. Finally, the re-

lationship between wavelet scale and Fourier period

is very different for the two functions (see section 3h).

f. Choice of scales

Once a wavelet function is chosen, it is necessary

to choose a set of scales s to use in the wavelet trans-

form (4). For an orthogonal wavelet, one is limited to

a discrete set of scales as given by Farge (1992). For

nonorthogonal wavelet analysis, one can use an arbi-

trary set of scales to build up a more complete picture.

It is convenient to write the scales as fractional pow-

ers of two:

s s j Jj
j j= =0 2 0 1δ , , , ,K (9)

J j N t s= ( )−δ δ1
2 0log , (10)

where s
0
 is the smallest resolvable scale and J deter-

mines the largest scale. The s
0
 should be chosen so that

the equivalent Fourier period (see section 3h) is ap-

proximately 2δt. The choice of a sufficiently small δj

depends on the width in spectral-space of the wavelet

function. For the Morlet wavelet, a δj of about 0.5 is

the largest value that still gives adequate sampling in

scale, while for the other wavelet functions, a larger

value can be used. Smaller values of δj give finer reso-

lution.

In Fig. 1b, N = 506, δt = 1/4 yr, s
0
 = 2δt, δj = 0.125,

and J = 56, giving a total of 57 scales ranging from

0.5 yr up to 64 yr. This value of δj appears adequate

to provide a smooth picture of wavelet power.

g. Cone of influence

Because one is dealing with finite-length time se-

ries, errors will occur at the beginning and end of the

wavelet power spectrum, as the Fourier transform in

(4) assumes the data is cyclic. One solution is to pad

the end of the time series with zeroes before doing the

wavelet transform and then remove them afterward

[for other possibilities such as cosine damping, see

Meyers et al. (1993)]. In this study, the time series is

padded with sufficient zeroes to bring the total length

N up to the next-higher power of two, thus limiting

the edge effects and speeding up the Fourier transform.

Padding with zeroes introduces discontinuities at

the endpoints and, as one goes to larger scales, de-

creases the amplitude near the edges as more zeroes

enter the analysis. The cone of influence (COI) is the

region of the wavelet spectrum in which edge effects

become important and is defined here as the e-fold-

ing time for the autocorrelation of wavelet power at

each scale (see Table 1). This e-folding time is cho-

sen so that the wavelet power for a discontinuity at the

edge drops by a factor e−2 and ensures that the edge

effects are negligible beyond this point. For cyclic

series (such as a longitudinal strip at a fixed latitude),

there is no need to pad with zeroes, and there is no COI.

The size of the COI at each scale also gives a mea-

sure of the decorrelation time for a single spike in the

time series. By comparing the width of a peak in the

wavelet power spectrum with this decorrelation time,

one can distinguish between a spike in the data (pos-

sibly due to random noise) and a harmonic component

at the equivalent Fourier frequency.

The COI is indicated in Figs. 1b and 1c by the cross-

hatched regions. The peaks within these regions have

presumably been reduced in magnitude due to the zero

padding. Thus, it is unclear whether the decrease in 2–

8-yr power after 1990 is a true decrease in variance or

an artifact of the padding. Note that the much narrower

Mexican hat wavelet in Fig. 1c has a much smaller

COI and is thus less affected by edge effects.

h. Wavelet scale and Fourier frequency

An examination of the wavelets in Fig. 2 shows that

the peak in ψ$ (sω) does not necessarily occur at a fre-

quency of s−1. Following the method of Meyers et al.

(1993), the relationship between the equivalent Fou-

rier period and the wavelet scale can be derived ana-

lytically for a particular wavelet function by substitut-

ing a cosine wave of a known frequency into (4) and

computing the scale s at which the wavelet power spec-

TABLE 2. Empirically derived factors for four wavelet bases.

Name Cδ γ δj
0

ψ
0
(0)

Morlet (ω
0
 = 6) 0.776 2.32 0.60 π−1/4

Paul (m = 4) 1.132 1.17 1.5 1.079

Marr (DOG m = 2) 3.541 1.43 1.4 0.867

DOG (m = 6) 1.966 1.37 0.97 0.884

Cδ = reconstruction factor.

γ = decorrelation factor for time averaging.

δj
0 
= factor for scale averaging.
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trum reaches its maximum. For the Morlet wavelet

with ω
0
 = 6, this gives a value of λ = 1.03s, where λ is

the Fourier period, indicating that for the Morlet wave-

let the wavelet scale is almost equal to the Fourier

period. Formulas for other wavelet functions are given

in Table 1, while Fig. 2 gives a graphical representation.

In Figs. 1b,c, the ratio of Fourier period to wavelet

scale can be seen by a comparison of the left and right

axes. For the Morlet, the two are nearly identical, while

for the Mexican hat, the Fourier period is four times

larger than the scale. This ratio has no special signifi-

cance and is due solely to the functional form of each

wavelet function. However, one should certainly con-

vert from scale to Fourier period before plotting, as

presumably one is interested in equating wavelet

power at a certain time and scale with a (possibly short-

lived) Fourier mode at the equivalent Fourier period.

i. Reconstruction

Since the wavelet transform is a bandpass filter with

a known response function (the wavelet function), it

is possible to reconstruct the original time series us-

ing either deconvolution or the inverse filter. This is

straightforward for the orthogonal wavelet transform

(which has an orthogonal basis), but for the continu-

ous wavelet transform it is complicated by the redun-

dancy in time and scale. However, this redundancy

also makes it possible to reconstruct the time series

using a completely different wavelet function, the easi-

est of which is a delta (δ) function (Farge 1992). In

this case, the reconstructed time series is just the sum

of the real part of the wavelet transform over all scales:

x
j t

C

W s

s
n

n j

jj

J

=
( )

ℜ ( ){ }
=
∑δ δ

ψδ

1 2

0
1 2

0
0

. (11)

The factor ψ
0
(0) removes the energy scaling, while the

s
j

1/2 converts the wavelet transform to an energy den-

sity. The factor Cδ comes from the reconstruction of a

δ function from its wavelet transform using the func-

tion ψ
0
(η). This Cδ is a constant for each wavelet func-

tion and is given in Table 2. Note that if the original

time series were complex, then the sum of the com-

plex W
n
(s) would be used instead.

To derive Cδ for a new wavelet function, first as-

sume a time series with a δ function at time n = 0, given

by x
n
 = δ

n0
. This time series has a Fourier transform

x$
k
 = N−1, constant for all k. Substituting x$

k
 into (4), at

time n = 0 (the peak), the wavelet transform becomes

W s
N

s k

k

N

δ ψ ω( ) = ∗( )
=

−

∑1

0

1

ˆ . (12)

The reconstruction (11) then gives

C
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s
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jj

J

δ
δδ δ

ψ
=
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1 2

0
1 2

0
0
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The Cδ is scale independent and is a constant for each

wavelet function.

The total energy is conserved under the wavelet

transform, and the equivalent of Parseval’s theorem

for wavelet analysis is

σ
δ δ

δ

2

2

00

1

=
( )

==

−
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C N

W s

s

n j

jj

J

n

N

, (14)

where σ2 is the variance and a δ function has been as-

sumed for reconstruction. Both (11) and (14) should

be used to check wavelet routines for accuracy and to

ensure that sufficiently small values of s
0
 and δj have

been chosen.

For the Niño3 SST, the reconstruction of the time

series from the wavelet transform has a mean square

error of 1.4% or 0.087°C.

4. Theoretical spectrum and significance
levels

To determine significance levels for either Fourier

or wavelet spectra, one first needs to choose an appro-

priate background spectrum. It is then assumed that

different realizations of the geophysical process will

be randomly distributed about this mean or expected

background, and the actual spectrum can be compared

against this random distribution. For many geophysi-

cal phenomena, an appropriate background spectrum

is either white noise (with a flat Fourier spectrum) or

red noise (increasing power with decreasing frequency).

A previous study by Qiu and Er (1995) derived the

mean and variance of the local wavelet power spec-

trum. In this section, the theoretical white- and red-

noise wavelet power spectra are derived and compared

to Monte Carlo results. These spectra are used to es-

tablish a null hypothesis for the significance of a peak

in the wavelet power spectrum.
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a. Fourier red noise spectrum

Many geophysical time series can be modeled as

either white noise or red noise. A simple model for red

noise is the univariate lag-1 autoregressive [AR(1), or

Markov] process:

x x zn n n= +−α 1 , (15)

where α is the assumed lag-1 autocorrelation, x
0
 = 0,

and z
n
 is taken from Gaussian white noise. Following

Gilman et al. (1963), the discrete Fourier power spec-

trum of (15), after normalizing, is

P
k N

k =
−

+ − ( )
1

1 2 2

2

2

α
α α πcos

, (16)

where k = 0 … N/2 is the frequency index. Thus, by

choosing an appropriate lag-1 autocorrelation, one can

use (16) to model a red-noise spectrum. Note that α = 0

in (16) gives a white-noise spectrum.

The Fourier power spectrum for the Niño3 SST is

shown by the thin line in Fig. 3. The spectrum has been

normalized by N/2σ2, where N is the number of points,

and σ2 is the variance of the time series. Using this

normalization, white noise would have an expectation

value of 1 at all frequencies. The red-noise background

spectrum for α = 0.72 is shown by the lower dashed

curve in Fig. 3. This red-noise was estimated from (α
1

+ √
α

2
)/2, where α

1
 and α

2
 are the lag-1 and lag-2

autocorrelations of the Niño3 SST. One can see the

broad set of ENSO peaks between 2 and 8 yr, well

above the background spectrum.

b. Wavelet red noise spectrum

The wavelet transform in (4) is a series of bandpass

filters of the time series. If this time series can be

modeled as a lag-1 AR process, then it seems reason-

able that the local wavelet power spectrum, defined

as a vertical slice through Fig. 1b, is given by (16). To

test this hypothesis, 100 000 Gaussian white-noise

time series and 100 000 AR(1) time series were con-

structed, along with their corresponding wavelet power

spectra. Examples of these white- and red-noise wave-

let spectra are shown in Fig. 4. The local wavelet spec-

tra were constructed by taking vertical slices at time

n = 256. The lower smooth curves in Figs. 5a and 5b

show the theoretical spectra from (16). The dots show

the results from the Monte Carlo simulation. On av-

erage, the local wavelet power spectrum is identical

to the Fourier power spectrum given by (16).

Therefore, the lower dashed curve in Fig. 3 also

corresponds to the red-noise local wavelet spectrum.

A random vertical slice in Fig. 1b would be expected

to have a spectrum given by (16). As will be shown in

section 5a, the average of all the local wavelet spectra

tends to approach the (smoothed) Fourier spectrum of

the time series.

c. Significance levels

The null hypothesis is defined for the wavelet power

spectrum as follows: It is assumed that the time series

has a mean power spectrum, possibly given by (16);

if a peak in the wavelet power spectrum is significantly

above this background spectrum, then it can be as-

sumed to be a true feature with a certain percent con-

fidence. For definitions, “significant at the 5% level”

is equivalent to “the 95% confidence level,” and im-

plies a test against a certain background level, while

the “95% confidence interval” refers to the range of

confidence about a given value.

The normalized Fourier power spectrum in Fig. 3

is given by N|x$
k
|2/2σ2, where N is the number of points,

x$
k
 is from (3), and σ2 is the variance of the time series.

If x
n
 is a normally distributed random variable, then

both the real and imaginary parts of x$
k
 are normally

distributed (Chatfield 1989). Since the square of a

normally distributed variable is chi-square distributed

with one degree of freedom (DOF), then |x$
k
|2 is chi-
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FIG. 4. (a) The local wavelet power spectrum for a Gaussian

white noise process of 512 points, one of the 100 000 used for

the Monte Carlo simulation. The power is normalized by 1/σ2, and

contours are at 1, 2, and 3. The thick contour is the 95% confidence

level for white noise. (b) Same as (a) but for a red-noise AR(1)

process with lag-1 of 0.70. The contours are at 1, 5, and 10. The

thick contour is the 95% confidence level for the corresponding

red-noise spectrum.
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square distributed with two DOFs, denoted by χ
2

2

(Jenkins and Watts 1968). To determine the 95% con-

fidence level (significant at 5%), one multiplies the

background spectrum (16) by the 95th percentile value

for χ
2

2 (Gilman et al. 1963). The 95% Fourier confi-

dence spectrum for the Niño3 SST is the upper dashed

curve in Fig. 3. Note that only a few frequencies now

have power above the 95% line.

In the previous section, it was shown that the local

wavelet spectrum follows the mean Fourier spectrum.

If the original Fourier components are normally dis-

tributed, then the wavelet coefficients (the bandpassed

inverse Fourier components) should also be normally

distributed. If this is true, then the wavelet power spec-

trum, |W
n
(s)|2, should be χ

2

2 distributed. The upper

curves in Figs. 5a and 5b show the 95% Fourier red-

noise confidence level versus the 95% level from the

Monte Carlo results of the previous section. Thus, at

each point (n, s) in Fig. 1b, assuming a red-noise pro-

cess, the distribution is χ
2

2. Note that for a wavelet

transform using a real-valued function, such as the

Mexican hat shown in Fig. 1c, there is only one de-

gree of freedom at each point, and the distribution is

χ
1

2.

In summary, assuming a mean background spec-

trum, possibly red noise [(16)], the distribution for the

Fourier power spectrum is

N x
P

k

k

ˆ
2

2 2
2

\\\2

1

2σ
χ⇒ (17)

at each frequency index k, and “⇒” indicates “is dis-

tributed as.” The corresponding distribution for the

local wavelet power spectrum is

W s
P

n

k

( )
⇒

2

2 2
21

2σ
χ (18)

at each time n and scale s. The 1/2 removes the DOF

factor from the χ2 distribution. (For a real wavelet the

distribution on the right-hand side would be P
k
χ

1

2.) The

value of P
k
 in (18) is the mean spectrum at the Fourier

frequency k that corresponds to the wavelet scale s (see

section 3h). Aside from the relation between k and s,

(18) is independent of the wavelet function. After find-

ing an appropriate background spectrum and choos-

ing a particular confidence for χ2 such as 95%, one can

then calculate (18) at each scale and construct 95%

confidence contour lines.

As with Fourier analysis, smoothing the wavelet

power spectrum can be used to increase the DOF and

enhance confidence in regions of significant power.

Unlike Fourier, smoothing can be performed in either

the time or scale domain. Significance levels and

DOFs for smoothing in time or scale are discussed in

section 5.
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FIG. 5. (a) Monte Carlo results for local wavelet spectra of white

noise (α = 0.0). The lower thin line is the theoretical mean white-

noise spectrum, while the black dots are the mean at each scale

of 100 000 local wavelet spectra. The local wavelet spectra were

slices taken at time n = 256 out of N = 512 points. The top thin

line is the 95% confidence level, equal to χ
2

2 (95%) times the mean

spectrum. The black dots are the 95% level from the Monte Carlo

runs. (b) Same as (a) but for red noise of α = 0.70.
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Inside the COI, the distribution is still χ2, but if the

time series has been padded with zeroes, then the mean

spectrum is reduced by a factor of (1 − ½e−2t/τs), where

τ
s
 is from Table 1, and t is the distance (in time) from

either the beginning or end of the wavelet power spec-

trum.

The 95% confidence level for the Niño3 SST is

shown by the thick contours on Figs. 1b and 1c. Dur-

ing 1875–1910 and 1960–90, the variance in the 2–8-

yr band is significantly above the 95% confidence for

red noise. During 1920–60, there are a few isolated

significant regions, primarily around 2 yr, and at the

edge of the usual 2–8 yr ENSO band. The 95% confi-

dence implies that 5% of the wavelet power should be

above this level. In Fig. 4b, approximately 5% of the

points are contained within the 95% contours. For the

Niño3 wavelet spectrum, 4.9% of the points are above

95%, implying that for the Niño3 time series a test of

enclosed area cannot distinguish between noise and

signal. However, the spatial distribution of variance

can also be examined for randomness. In Fig. 4b, the

variance shows a gradual increase with period, with

random distributions of high and low variance about

this mean spectrum. In Figs. 1b and 1c, the significant

regions are clustered together in both period and time,

indicating less randomness of the underlying process.

d. Confidence interval

The confidence interval is defined as the probabil-

ity that the true wavelet power at a certain time and

scale lies within a certain interval about the estimated

wavelet power. Rewriting (18) as

W s

P

n

k

( )
⇒

2

2

2
2

2σ
χ

, (19)

one can then replace the theoretical wavelet power σ2P
k

with the true wavelet power, defined as W
n

2(s). The

confidence interval for W
n

2(s) is then

2

2

2

1 22
2

2 2

2
2

2

χ χp
W s s

p
W sn n n( )

( ) ≤ ( ) ≤
−( )

( ) ,

(20)

where p is the desired significance (p = 0.05 for the

95% confidence interval) and χ
2

2(p/2) represents the

value of χ2 at p/2. Note that for real-valued wavelet

functions, the right-hand side of (19) becomes χ
1

2, and

the factor of 2 is removed from the top of (20). Using

(20) one can then find confidence intervals for the

peaks in a wavelet power spectrum to compare against

either the mean background or against other peaks.

e. Stationarity

It has been argued that wavelet analysis requires the

use of nonstationary significance tests (Lau and Weng

1995). In defense of the use of stationary tests such as

those given above, the following points are noted.

1) A nonarbitrary test is needed. The assumption of

stationary statistics provides a standard by which

any nonstationarity can be detected.

2) The test should be robust. It should not depend

upon the wavelet function or upon the actual dis-

tribution of the time series, other than the assump-

tion of a background spectrum.

3) A non–Monte Carlo method is preferred. In addi-

tion to the savings in computation, the chi-square

test simplifies comparing one wavelet transform

with another.

4) Many wavelet transforms of real data appear simi-

lar to transforms of red-noise processes (compare

Figs. 1b and 4b). It is therefore difficult to argue

that large variations in wavelet power imply

nonstationarity.

5) One needs to ask what is being tested. Is it

nonstationarity? Or low-variance versus high-vari-

ance periods? Or changes in amplitude of Fourier

modes? The chi-square test gives a standard mea-

sure for any of these possibilities.

In short, it appears wiser to assume stationarity and

design the statistical tests accordingly. If the tests show

large deviations, such as the changes in ENSO vari-

ance seen in Figs. 1b and 1c, then further tests can be

devised for the particular time series.

5. Smoothing in time and scale

a. Averaging in time (global wavelet spectrum)

If a vertical slice through a wavelet plot is a mea-

sure of the local spectrum, then the time-averaged

wavelet spectrum over a certain period is

W s
n

W sn

a

n

n n

n

2 21

1

2

( ) = ( )
=
∑ , (21)

where the new index n is arbitrarily assigned to the

W
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midpoint of n
1
 and n

2
, and n

a
 = n

2
 − n

1
 + 1 is the num-

ber of points averaged over. By repeating (21) at each

time step, one creates a wavelet plot smoothed by a

certain window.

The extreme case of (21) is when the average is over

all the local wavelet spectra, which gives the global

wavelet spectrum

W s
N

W sn

n

N
2 2

0

1
1( ) = ( )

=

−

∑ . (22)

In Fig. 6, the thick solid line shows the normalized

global wavelet spectrum, W
 2(s)/σ2, for the Niño3 SST.

The thin solid line in Fig. 6 shows the same spectrum

as in Fig. 3, but smoothed with a five-point running

average. Note that as the Fourier spectrum is smoothed,

it approaches the global wavelet spectrum more and

more closely, with the amount of necessary smooth-

ing decreasing with increasing scale. A comparison of

Fourier spectra and wavelet spectra can be found in

Hudgins et al. (1993), while a theoretical discussion

is given in Perrier et al. (1995). Percival (1995) shows

that the global wavelet spectrum provides an unbiased

and consistent estimation of the true power spectrum

of a time series. Finally, it has been suggested that the

global wavelet spectrum could provide a useful mea-

sure of the background spectrum, against which peaks

in the local wavelet spectra could be tested (Kestin et

al. 1998).

By smoothing the wavelet spectrum using (21), one

can increase the degrees of freedom of each point and

increase the significance of peaks in wavelet power.

To determine the DOFs, one needs the number of in-

dependent points. For the Fourier spectrum (Fig. 3),

the power at each frequency is independent of the oth-

ers, and the average of the power at M frequencies,

each with two DOF, is χ2 distributed with 2M degrees

of freedom (Spiegel 1975). For the time-averaged

wavelet spectrum, one is also averaging points that are

χ
2

2 distributed, yet Figs. 1b and 4 suggest that these

points are no longer independent but are correlated in

both time and scale. Furthermore, the correlation in

time appears to lengthen as scale increases and the

wavelet function broadens. Designating ν as the DOFs,

one expects ν ∝ n
a
 and ν ∝ s−1. The simplest formula

to consider is to define a decorrelation length τ = γs,

such that ν = 2n
a
δt/τ. However, Monte Carlo results

show that this τ is too abrupt at small n
a
 or large scales;

even though one is averaging points that are highly

correlated, some additional information is gained.

The Monte Carlo results are given in Fig. 7, which

shows the mean and 95% levels for various n
a
. These
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FIG. 6. Fourier power spectrum from Fig. 3, smoothed with a

five-point running average (thin solid line). The thick solid line is

the global wavelet spectrum for the Niño3 SST. The lower dashed

line is the mean red-noise spectrum, while the upper dashed line

is the 95% confidence level for the global wavelet spectrum,

assuming α = 0.72.
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FIG. 7. Monte Carlo results for the time-averaged wavelet

spectra (21) of white noise using the Morlet wavelet. The numbers

to the right of each curve indicate n
a
, the number of times that were

averaged, while the black dots are the 95% level for the Monte

Carlo runs. The top thin lines are the 95% confidence from (23).

The lower thin line is the mean white-noise spectrum, while the

black dots are the means of the Monte Carlo runs (all of the means

are identical).
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curves are best described by the distribution P
k
χν

2/ν,

where P
k
 is the original assumed background spectrum

and χν
2 is the chi-square distribution with ν degrees of

freedom, where

ν
δ

γ
= +







2 1

2
n t

s

a
. (23)

Note that for a real-valued function such as the Mexi-

can hat, each point only has one DOF, and the factor

of 2 in (23) is removed. The decorrelation factor γ is

determined empirically by an iterative fit of absolute

error to the 95% Monte Carlo level and

is given in Table 2 for the four wavelet

functions. The relative error (or percent

difference) between the Monte Carlo and

the χν
2/ν distribution was everywhere less

than 7% for all scales and n
a
 values. The

thin lines in Fig. 7 show the results of

(23) using the Morlet wavelet. Note that

even the white noise process has more

stringent 95% confidence levels at large

scales compared to small. As a final note,

if the points going into the average are

within the cone of influence, then n
a
 is re-

duced by approximately one-half of the number within

the COI to reflect the decreased amplitude (and infor-

mation) within that region.

A different definition of the global wavelet spec-

trum, involving the discrete wavelet transform and

including a discussion of confidence intervals, is given

by Percival (1995). An example using Percival’s defi-

nition can be found in Lindsay et al. (1996).

The 95% confidence line for the Niño3 global

wavelet spectrum is the upper dashed line in Fig. 6.

Only the broad ENSO peak remains significant, al-

though note that power at other periods can be less than

significant globally but still show significant peaks in

local wavelet power.

b. Averaging in scale

To examine fluctuations in power over a range of

scales (a band), one can define the scale-averaged

wavelet power as the weighted sum of the wavelet

power spectrum over scales s
1
 to s

2
:

W
j t

C

W s

s
n

n j

jj j

j

2

2

1

2

=
( )

=
∑δ δ

δ
. (24)

variance (0.72 correlation). Both time series show

consistent interdecadal changes, including a possible

modulation in ENSO variance with a 15-yr period. To

examine more closely the relation between Niño3 SST

and the SOI, one could use the cross-wavelet spectrum

(see section 6c).

As with time-averaged wavelet spectrum, the DOFs

are increased by smoothing in scale, and an analytical

relationship for significance levels for the scale-aver-

aged wavelet power is desirable. Again, it is conve-

nient to normalize the wavelet power by the expecta-

tion value for a white-noise time series. From (24), this

expectation value is (δj δt σ2)/(CδSavg
), where σ2 is the

time-series variance and S
avg

 is defined as

S
s jj j

j

avg =










=

−

∑ 1

1

2

1

. (25)

The black dots in Fig. 9 show the Monte Carlo re-

sults for both the mean and the 95% level of scale-

averaged wavelet power as a function of various n
a
,

where n
a
 = j

2
 − j

1
 + 1 is the number of scales averaged.
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FIG. 8. Scale-averaged wavelet power (24) over the 2–8-yr band for the Niño3

SST (solid) and the SOI (dashed). The thin solid line is the 95% confidence level

from (26) for Niño3 SST (assuming red noise α = 0.72), while the thin dashed

line is the 95% level for the SOI (red noise α = 0.61).

Comparing (24) and (14), the scale-averaged wavelet

power is a time series of the average variance in a cer-

tain band. Thus, the scale-averaged wavelet power can

be used to examine modulation of one time series by

another, or modulation of one frequency by another

within the same time series.

As an example of averaging over scale, Fig. 8 shows

the average of Fig. 1b over all scales between 2 and 8

yr (actually 2–7.34 yr), which gives a measure of the

average ENSO variance versus time. The variance plot

shows a distinct period between 1920 and 1960 when

ENSO variance was low. Also shown in Fig. 8 is the

variance in the Southern Oscillation index (SOI),

which correlates well with the changes in Niño3 SST
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Using the normalization factor for white noise, the

distribution can be modeled as

C S

j t
W Pn

δ ν

δ δ σ
χ
ν

avg

2

2
2

⇒ , (26)

where the scale-averaged theoretical spectrum is now

given by

P S
P

s

j

jj j

j

=
=
∑avg

1

2

. (27)

Note that for white noise this spectrum is still unity

(due to the normalization). The degrees of freedom ν
in (26) is modeled as

ν
δ

δ
= +







2

1
0

2
n S

S

n j

j

a aavg

mid

, (28)

where S
mid

 = s
0
20.5(j

1
+j

2
)δj. The factor S

avg
/S

mid
 corrects for

the loss of DOF that arises from dividing the wavelet

power spectrum by scale in (24) and is observed in the

Monte Carlo results. Note that for a real-valued func-

tion such as the Mexican hat, each point only has one

DOF, and the factor of 2 in (28) is removed. The

decorrelation distance δj
0
 is determined empirically by

an iterative fit of absolute error between (28) and the

95% level of the Monte Carlo results and is given in

Table 2. The thin lines in Fig. 9 show the results of

(28) for the Morlet, Paul (m = 4), DOG2, and DOG6

wavelet functions. For these wavelets, the relative er-

ror between the χν
2 distribution using (28) and the

Monte Carlo results is less than 1.5%. It should be

noted that (28) is valid only for confidences of 95%

or less. At higher confidence levels, the distribution

begins to deviate significantly from χ2, and (28) is no

longer valid.

In Fig. 8, the thin solid and dashed lines show the

95% confidence levels for the Niño3 SST and the SOI

using (25)–(28). In this case, δj = 0.125, the sum was

between Fourier periods 2 and 8 yr (actually 2.1–7.6

yr), n
a
 = 16, S

avg
 = 0.221 yr, S

mid
 = 3.83 yr, δj

0
 = 0.60,

and ν = 6.44. Since the two time series do not have

the same variance or the same red-noise background,

the 95% lines are not equal.

6. Extensions to wavelet analysis

a. Filtering

As discussed in section 3i, the wavelet transform

(4) is essentially a bandpass filter of uniform shape and

varying location and width. By summing over a sub-

set of the scales in (11), one can construct a wavelet-

filtered time series:

′ =
( )

ℜ ( ){ }
=
∑x

j t

C

W s

s
n

n j

jj j

jδ δ
ψδ

1 2

0
1 20

1

2

. (29)

This filter has a response function given by the sum

of the wavelet functions between scales j
1
 and j

2
.

This filtering can also be done on both the scale and

time simultaneously by defining a threshold of wave-

let power. This “denoising” removes any low-ampli-

tude regions of the wavelet transform, which are pre-

sumably due to noise. This technique has the advan-

tage over traditional filtering in that it removes noise

at all frequencies and can be used to isolate single

events that have a broad power spectrum or multiple
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FIG. 9. Monte Carlo results for the wavelet spectra averaged

over n
a
 scales from (24), using white noise. The average from (24)

is centered on scale s = 16δt for convenience, but the results are

independent of the center scale. To make the graph independent

of the choice for δj, the x axis has been compressed by the Monte

Carlo δj of 0.25. The top black dots are the 95% level for the

Monte Carlo runs, while the lower black dots are the means. The

means for all four wavelet bases are all the same, while the 95%

level depends on the width of the basis in Fourier space, with the

Morlet being the most narrow. The top thin lines are the 95%

confidence from (28). The lower thin line is the mean white-noise

spectrum.
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power in the 1915–30 period. The generally low power

observed in Figs. 1 and 8 between 1930 and 1950

mainly reflects a lack of power in the Australian re-

gion, with the eastern Pacific having some significant

fluctuations in the 1940s. The large zonal-scale fluc-

tuations in both regions return in the 1950s, with the

strongest amplitudes after 1970. The diminished

power after 1990 is within the COI, yet may reflect

the changes in ENSO structure and evolution seen in

recent years (Wang 1995).

c. Cross-wavelet spectrum

Given two time series X and Y, with wavelet trans-

forms W
n

X(s) and W
n

Y(s), one can define the cross-wave-

let spectrum as W
n

XY(s) = W
n

X(s)W
n

Y*(s), where W
n

Y*(s) is

the complex conjugate of W
n

Y(s). The cross-wavelet

spectrum is complex, and hence one can define the

cross-wavelet power as |W
n

XY(s)|.
Confidence levels for the cross-wavelet power can

be derived from the square root of the product of two

chi-square distributions (Jenkins and Watts 1968).

events that have varying frequency. A more complete

description including examples is given in Donoho

and Johnstone (1994).

Another filtering technique involves the use of the

two-dimensional wavelet transform. An example can

be found in Farge et al. (1992), where two-dimensional

turbulent flows are “compressed” using an orthonor-

mal wavelet packet. This compression removes the

low-amplitude “passive” components of the flow,

while retaining the high-amplitude “dynamically ac-

tive” components.

b. Power Hovmöller

By scale-averaging the wavelet power spectra at

multiple locations, one can assess the spatial and tem-

poral variability of a field of data. Figure 10a shows a

power Hovmöller (time–longitude diagram) of the

wavelet variance for sea level pressure (SLP) anoma-

lies in the 2–8-yr band at each longitude. The original

time series at each longitude is the average SLP be-

tween 5° and 15°S. At each longitude, the wavelet

power spectrum is computed using the Morlet wave-

let, and the scale-averaged wavelet power over the 2–

8-yr band is calculated from (24). The average wave-

let-power time series are combined into a two-dimen-

sional contour plot as shown in Fig. 10a. The 95%

confidence level is computed using the lag-1 auto-

correlation at each longitude and (26).

Several features of Fig. 10 demonstrate the useful-

ness of wavelet analysis. Fig. 10c shows the time-av-

eraged 2–8-yr power as a function of longitude. Broad

local maxima at 130°E and 130°W reflect the power

associated with the Southern Oscillation. This longi-

tudinal distribution of power is also observed in the

2–8-yr band for Fourier spectra at each longitude (not

shown). The zonal average of the power Hovmöller

(Fig. 10b) gives a measure of global 2–8-yr variance

in this latitude band. Comparing this to Fig. 8, one can

see that the peaks in zonal-average power are associ-

ated with the peaks in Niño3 SST variance, and, hence,

the 2–8-yr power is dominated in this latitude band by

ENSO.

With the power Hovmöller in Fig. 10a, the tempo-

ral variations in ENSO-associated SLP fluctuations

can be seen. While the low power near the date line

region is apparent throughout the record, the high

power regions fluctuate on interdecadal timescales.

From the 1870s to the 1920s, strong decadal fluctua-

tions in the 2–8-yr power are observed in the Austra-

lian region. In contrast, the eastern Pacific fluctuations

are strong only through 1910 and appear to have little
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FIG. 10. (a) Power Hovmöller of 2–8-yr averaged wavelet

power in SLP. The original time series at each longitude is the

average SLP between 5° and 15°S. The contour interval is 0.1 mb2.

The thick contour is the 95% confidence level, using the

corresponding red-noise spectrum at each longitude; (b) the

average of (a) over all longitudes; (c) the average of (a) over all

times.
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Assuming both wavelet spectra are χ2 distributed with

ν DOFs, the probability distribution is given by

f z z zν

ν
ν

ν( ) =






( )
−

−2

2

2

2

1
0

Γ
Κ , (30)

where z is the random variable, Γ is the Gamma func-

tion, and K
0
(z) is the modified Bessel function of or-

der zero. The cumulative distribution function is given

by the integral p = ∫0

Zν(p) fν(z) dz, where Zν(p) is the con-

fidence level associated with probability p. Given a

probability p, this integral can be inverted to find the

confidence level Zν(p).

If the two time series have theoretical Fourier spec-

tra P
k

X and P
k

Y, say from (16), then the cross-wavelet

distribution is

W s W s Z p
P P

n
X

n
Y

X Y

k
X

k
Y

( ) ( )
⇒

( )*

σ σ ν
ν

, (31)

where σ
X
 and σ

Y
 are the respective standard deviations.

For ν = 1 (real wavelets), Z
1
 (95%) = 2.182, while for

ν = 2 (complex wavelets), Z
2
 (95%) = 3.999.

Figure 11a shows the wavelet power spectrum of

Niño3 SST using the Paul (m = 4) wavelet, while Fig.

11b shows the wavelet power for the SOI. Note that

the narrow width in time of the Paul gives better time

localization than the Morlet but poorer frequency lo-

calization. Finally, Fig. 11c shows the cross-wavelet

power for the Niño3 SST and the SOI and indicates

large covariance between the time series at all scales

between 2 and 8 yr. The 95% confidence level was

derived using (31) and assuming red-noise spectra

(16) with α = 0.72 for Niño3 SST and α = 0.61 for

the SOI.

d. Wavelet coherence and phase

Another useful quantity from Fourier analysis is the

coherence, defined as the square of the cross-spectrum

normalized by the individual power spectra. This

gives a quantity between 0 and 1, and measures the

cross-correlation between two time series as a func-

tion of frequency. Unfortunately, as noted by Liu

(1994), this coherence is identically one at all times

and scales. In Fourier analysis, this problem is circum-

vented by smoothing the cross-spectrum before nor-

malizing. For wavelet analysis, it is unclear what sort

of smoothing (presumably in time) should be done to

give a useful measure of coherence. This smoothing

would also seem to defeat the purpose of wavelet

analysis by decreasing the localization in time. Liu

(1994) suggests plotting the real and imaginary parts

(the co- and quadrature-wavelet spectra) separately,

and also plotting the coherence phase, defined as

tan−1 [ℑ{W
n

XY(s)}/ℜ{W
n

XY(s)}].
The co- and quadrature-wavelet spectra for the

Niño3 SST and the SOI (not shown) do not appear to

give any additional information, especially in conjunc-

tion with the coherence phase shown in Fig. 11d. The

shaded region in Fig. 11d shows where the phase dif-

ference between Niño3 SST and the SOI is between

160° and 200°. It is well known that the Niño3 SST

and the SOI are out of phase, yet this shows that the

time series are within ±20° of being 180° out of phase

over all periods between 2 and 8 yr. Furthermore, this

out-of-phase behavior is consistent with changes in the

cross-wavelet power, with periods of low variance, say

between 1920 and 1960, associated with more random

phase differences.

7. Summary

Wavelet analysis is a useful tool for analyzing time

series with many different timescales or changes in

variance. The steps involved in using wavelet analy-

sis are as follows:1

1) Find the Fourier transform of the (possibly padded)

time series.

2) Choose a wavelet function and a set of scales to

analyze.

3) For each scale, construct the normalized wavelet

function using (6).

4) Find the wavelet transform at that scale using (4);

5) Determine the cone of influence and the Fourier

wavelength at that scale.

6) After repeating steps 3–5 for all scales, remove any

padding and contour plot the wavelet power

spectrum.

7) Assume a background Fourier power spectrum

(e.g., white or red noise) at each scale, then use the

chi-squared distribution to find the 95% confidence

(5% significance) contour.

For other methods of wavelet analysis, such as the

1Software and examples are available from the authors at URL:

http://paos.colorado.edu/research/wavelets/.
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orthogonal wavelet transform, see Farge

(1992). The results presented in section

4 on statistical significance testing are

presumably valid for higher-dimensional

wavelet analysis (assuming an appropri-

ate background spectrum can be chosen),

but this has not been tested and is left to

future research. More research is also

needed on the properties and usefulness

of the cross-wavelet, wavelet coherence,

and co- and quadrature spectra.

In the wavelet analysis of Niño3 sea

surface temperature, the Southern Oscil-

lation index, and the sea level pressure,

it was found that the variance of the El

Niño–Southern Oscillation changed on

interdecadal timescales, with a period of

low variance from 1920 to 1960. Using

both the filtered 2–8-yr variance and the

cross-wavelet power, the changes in

Niño3 SST variance appear to be well

correlated with changes in the SOI. The

SLP power Hovmöller suggests that

these changes are planetary in scale,

while Torrence and Webster (1997) use

wavelet analysis to show that inter-

decadal changes in ENSO are also related

to changes in Indian monsoon variance.

Further studies are necessary to deter-

mine the extent and possible causes of

these interdecadal changes.

It is hoped that the analysis presented

here will prove useful in studies of

nonstationarity in time series, and the

addition of statistical significance tests

will improve the quantitative nature of

wavelet analysis. Future studies using

wavelet analysis can then concentrate on

the results rather than simply the method.
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