

UNIVERSITYOF BIRMINGHAM

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

KEY TAKE AWAYS FROM THIS WEEK/SESSION:

- Noise can be correlated as a result of physical processes
- Don't neglect correlation
- \bullet A GP is an extension of a multivariate normal distribution
- A GP has very interesting properties that we can use to model correlated noise
- \bullet There are a bunch of GP software implementations but one that ties in nicely with a physical interpretation is Celerite

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

- Autor the

KIC 12069424

Frequency

white

	- Data
	Smoothed Data
I	
فأرويانا أأرز الاصطمالين ا	الاقتحاء فرجاف الاسبا
	and the second se

	_	Data
	_	Smoothed Data

Time

	_	Data
	_	Smoothed Data

2620

2640

Motivation - Correlated Data Basics

$$\begin{pmatrix} \operatorname{cov}(x,x) & \operatorname{cov}(x,y) \\ \operatorname{cov}(y,x) & \operatorname{cov}(y,y) \end{pmatrix} = \begin{pmatrix} 3.0 & 0.7 \\ 0.7 & 1.5 \end{pmatrix}$$

$$\mathcal{N}\left[\begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} 3.0 & 0.7\\0.7 & 1.5 \end{pmatrix} \right]$$

Motivation - Correlated Data Basics

$$\mathrm{ov}(X,Y) = rac{1}{n} \sum_{i=1}^n (x_i - E(X))(y_i - E(Y)).$$

 $\begin{pmatrix} \operatorname{cov}(x,x) & \operatorname{cov}(x,y) \\ \operatorname{cov}(y,x) & \operatorname{cov}(y,y) \end{pmatrix} = \begin{pmatrix} 3.0 & 0.7 \\ 0.7 & 1.5 \end{pmatrix}$

$$\mathcal{N}\left[\begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} 3.0 & 0.7\\0.7 & 1.5 \end{pmatrix} \right]$$

Motivation - Correlated Data Basics

$\mu(x+y) = \mu(x) + \mu(y)$

$\sigma^2(x+y) = \sigma^2(x) + \sigma^2(y) + 2\operatorname{cov}(x,y)$

when he

$$\mathcal{N}\left[\begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} 3.0 & 0.7\\0.7 & 1.5 \end{pmatrix} \right]$$

 $p(\mathbf{y}) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mu\Sigma)^{-1}(\mathbf{y} - \muT)\right)$

 $\begin{pmatrix} 3.0 & 0.7 \\ 0.7 & 1.5 \end{pmatrix}$ 3 \mathcal{N}

w h

KEY TAKE AWAYS:

- Noise can be correlated but we can deal with this
- For some this is noise
- For others this is signal

when had

• Physically, the current state depends on the previous state

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

GP's - Sources of Information

- 2006
- YOUTUBE | CUNNINGHAM : MLSS 2012
- HTTP://KATBAILEY.GITHUB.IO/POST/GAUSSIAN-PROCESSES-FOR-DUMMIES/

• <u>http://www.gaussianprocess.org/gpml/</u> Rasmussen & Williams

• You Tube - Richard Turner : ML Tutorial Gaussian Processes

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^T\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^{T}\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & \mathbf{0.0} \\ \mathbf{0.0} & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^T\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & \mathbf{X}.\mathbf{X} \\ \mathbf{X}.\mathbf{X} & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^{T}\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & \mathbf{X}.\mathbf{X} \\ \mathbf{X}.\mathbf{X} & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^T\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & \mathbf{X}.\mathbf{X} \\ \mathbf{X}.\mathbf{X} & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Multinomial $p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}\mathbf{y}^{T}\mathbf{\Sigma}^{-1}\mathbf{y}\right)$ $\mathbf{\Sigma} = \begin{bmatrix} 1.0 & \mathbf{X}.\mathbf{X} \\ \mathbf{X}.\mathbf{X} & 1.0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Conditioning

$$p(y_2|y_1, \mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2}(y_2 - \mu_{\star}) \mathbf{\Sigma}_{\star}^{-1} (y_2 - \mu_{\star})\right)$$
$$\mathbf{\Sigma} = \begin{bmatrix} 1.0 & 0.9 \\ 0.9 & 1.0 \end{bmatrix}$$
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Conditioning

$$p(y_2|y_1, \Sigma) \propto \exp\left(-\frac{1}{2}(y_2 - \mu_{\star})\Sigma_{\star}^{-1}(y_2 - \mu_{\star})\right)$$
$$\Sigma = \begin{bmatrix} 1.0 & 0.9 \\ 0.9 & 1.0 \end{bmatrix}$$
$$\mu_{\star} = W y_1 = 1.0, \Sigma_{\star} = 0.2$$

AN A

Martin Mart

V

0

-

$\boldsymbol{\Sigma} = \begin{bmatrix} 1.0 & 0.8 & 0.6 \\ 0.8 & 1.0 & 0.8 \\ 0.6 & 0.8 & 1.0 \end{bmatrix}$

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1.0 & 0.8 & 0.6 \\ 0.8 & 1.0 & 0.8 \\ 0.6 & 0.8 & 1.0 \end{bmatrix}$$

Index

Loosely - A multivariate Gaussian of infinite length

NOT SO LOOSELY:

f is a Gaussian process if $f(t) = [f(t_1), \ldots, f(t_n)]'$ has a multivariate normal distribution for all $t = [t_1, \ldots, t_n]'$: $f(t) \sim \mathcal{N}(m(t), K(t, t))$

Where m(t) is any function that maps any t index to a real value.

K(t, t) is the kernel, or covariance, function. Must be a positive semidefinite matrix. $K(t, t) = \{k(t_i, t_j)\}_{i, j=1...n}$

So $k(t_i, t_j)$ is a function that we can define.

Every finite subset of the domain t has a multivariate normal $f(t) \sim \mathcal{N}(m(t), K(t, t))$.

when had

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

Baye's rule

 $posterior = \frac{\text{likelihood} \times prior}{\text{marginal likelhood}}$

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

Note: Form from RW06

Martin Mart

Set up a GP

The Mean function: m(t) = 0

The kernal function: $k(t_i, t_j) = \sigma^2 \exp\left(-\frac{1}{2l^2}|t_i - t_j|^2\right)$

 $K(t, t) = \{k(t_i, t_j)\}_{i, j=1...n}$

 $f(t) \sim \mathcal{GP}(m(t), K(t, t))$

Kernel Choice: SE, More later

Baye's rule

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

Set up a GP

The Mean function: m(t) = 0

The kernal function: $k(t_i, t_j) = \sigma^2 \exp\left(-\frac{1}{2l^2}|t_i - t_j|^2\right)$

 $K(t, t) = \{k(t_i, t_j)\}_{i, j=1...n}$

 $f(t) \sim \mathcal{GP}(m(t), K(t, t))$

Kernel Choice: SE, More later

Baye's rule

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

Kernel Choice:

- Functional form of the kernel defines the
 - TYPES OF FUNCTIONS YOU WILL GET.
- CHOOSE YOUR KERNEL WISELY.
- This SE kernel has two parameters.
- This is the point at which you encode your

PRIOR KNOWLEDGE.

Baye's rule

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

Baye's rule

The Prior - For this kernel

Baye's rule

$$posterior = \frac{\text{likelihood} \times prior}{\text{marginal likelhood}}$$
$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

Posterior

Baye's rule

$$posterior = \frac{\text{likelihood} \times \mu}{\text{marginal likel}}$$

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

Posterior

Baye's rule

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

Applying a Multivariate Normal Prior

```
n = 100
mu = np.zeros(n)
Sigma = np.zeros([n, n])
1 = 10
for i in range(n):
    for j in range(n):
        Sigma[i, j] = np.exp(-0.5 * np.abs(i - j)**2 / 1**2)
fig, ax = plt.subplots(figsize=[16,9])
x = np.array([50, 30, 90])
y = np.array([0.0, 0.1, -0.2])
yerr = np.array([0.1, 0.1, 0.1])
for i in range(24000):
    p = np.random.multivariate_normal(mu, Sigma, 1)
    L = 1.0 / (2.0 * np.pi * yerr**2)**0.5 * np.exp(-
    if np.random.rand() < np.prod(L):</pre>
        ax.plot(np.arange(len(p[0])) + 1, [n for n in p[0]], 'k-', alpha=0.2
ax.errorbar(x+1, y, yerr=yerr, c='r', zorder=99, linestyle='none')
ax.set_xticks([])
ax.set_ylim([-4, 4])
ax.set_xlabel('t')
fig.savefig('posterior2_SE.png')
```

Baye's rule

likelihood \times prior posterior =marginal likelhood

$$p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{y}|X, \mathbf{w}$$

$$-0.5 * (p[0][x] - y)**2 / yerr**2)$$

HERE COMES THE MAGIC:

What if there was a way to evaluate all the FUNCTIONS FOR A GIVEN PRIOR!

Baye's rule

likelihood \times prior posterior = marginal likelhood

n = 100mu = np.zeros(n) Sigma = np.zeros([n, n]) l = 10 for i in range(n): for j in range(n): Sigma[i, j] = np.exp(-0.5 * np.abs(i - j)**2 / 1**2) fig, ax = plt.subplots(figsize=[16,9]) x = np.array([50, 30, 90])
y = np.array([0.0, 0.1, -0.2]) yerr = np.array([0.1, 0.1, 0.1])for i in range(24000): p = np.random.multivariate_normal(mu, Sigma, 1) L = 1.0 / (2.0 * np.pi * yerr**2)**0.5 * np.exp(-0.5 * (p[0][x] - y)**2 / yerr**2) if np.random.rand() < np.prod(L):</pre> ax.plot(np.arange(len(p[0])) + 1, [n for n in p[0]], 'k-', alpha=0.2) ax.errorbar(x+1, y, yerr=yerr, c='r', zorder=99, linestyle='none') ax.set_xticks([]) ax.set_ylim([-4, 4]) ax.set_xlabel('t') fig.savefig('posterior2_SE.png') . ~

HERE COMES THE MAGIC:

What if there was a way to evaluate all the FUNCTIONS FOR A GIVEN PRIOR!

$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{f}, X) p(\mathbf{f}|X) \, \mathrm{d}\mathbf{f}$

Baye's rule

likelihood \times prior posterior = marginal likelhood

n = 100mu = np.zeros(n) Sigma = np.zeros([n, n]) 1 = 10for i in range(n): for j in range(n): Sigma[i, j] = np.exp(-0.5 * np.abs(i - j)**2 / 1**2) fig, ax = plt.subplots(figsize=[16,9]) x = np.array([50, 30, 90])y = np.array([0.0, 0.1, -0.2])yerr = np.array([0.1, 0.1, 0.1])**for** i **in** range(24000): p = np.random.multivariate_normal(mu, Sigma, 1) L = 1.0 / (2.0 * np.pi * yerr**2)**0.5 * np.exp(-0.5 * (p[0][x] - y)**2 / yerr**2) if np.random.rand() < np.prod(L):</pre> ax.plot(np.arange(len(p[0])) + 1, [n for n in p[0]], 'k-', alpha=0.2) ax.errorbar(x+1, y, yerr=yerr, c='r', zorder=99, linestyle='none') ax.set_xticks([]) ax.set_ylim([-4, 4]) ax.set_xlabel('t') fig.savefig('posterior2_SE.png')

Formal justification

Consider normal regression problems (non-linear)

$$y(\mathbf{t}) = f(\mathbf{t}) + \epsilon \sigma_y$$

 $p(\epsilon) = \mathcal{N}(0, 1)$

Here we place a prior over the non-linear function:

 $p(f(\mathbf{t})|\theta) = \mathcal{GP}(0, K(\mathbf{t}, \mathbf{t}'))$

Now, the sum of Gaussian variables is a Gaussian. This results in a GP over y(t).

 $p(y(\mathbf{t})|\theta) = \mathcal{GP}(0, K(\mathbf{t}, \mathbf{t}') + \mathbf{I}\sigma_y^2)$

Baye's rule

likelihood \times prior posterior = marginal likelhood

mu = np.zeros(n Sigma = np.zeros([n, n]) = 10or i in range(n): or j in range(n); Sigma[i, j] = np.exp(-0.5 * np.abs(i - j)**2 / 1**2) plt.subplots(figsize=[16,9]) np.arrav([0.0, 0.1, -0.2])r = np.array([0.1, 0.1, 0.1])**r** i **in** range(24000): p = np.random.multivariate_normal(mu, Sigma, 1) = 1.0 / (2.0 * np.pi * yerr**2)**0.5 * np.exp(-0.5 * (p[0][x] - y)**2 / yerr**2) if np.random.rand() < np.prod(L):</pre> ax.plot(np.arange(len(p[0])) + 1, [n for n in p[0]], 'k-', alpha=0.2) ax.errorbar(x+1, y, yerr=yerr, c='r', zorder=99, linestyle='none') ax.set_xticks([]) ax.set_ylim([-4, 4]) ax.set_xlabel('t') fig.savefig('posterior2_SE.png')

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

Martin Chil

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

$$A = \begin{bmatrix} \operatorname{var}(y_{1,0}) & \operatorname{cov}(y_{1,0}, y_{1,1}) & \dots & \operatorname{cov}(y_{1,0}, y_{1,n}) \\ \operatorname{cov}(y_{1,1}, y_{1,0}) & \operatorname{var}(y_{1,1}) & \dots & \operatorname{cov}(y_{1,1}, y_{1,n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{1,n}, y_{1,0}) & \dots & \dots & \operatorname{var}(y_{1,n}) \end{bmatrix}$$

Martin Chil

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

$$A = \begin{bmatrix} \operatorname{var}(y_{1,0}) & \operatorname{cov}(y_{1,0}, y_{1,1}) & \dots & \operatorname{cov}(y_{1,0}, y_{1,n}) \\ \operatorname{cov}(y_{1,1}, y_{1,0}) & \operatorname{var}(y_{1,1}) & \dots & \operatorname{cov}(y_{1,1}, y_{1,n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{1,n}, y_{1,0}) & \dots & \dots & \operatorname{var}(y_{1,n}) \end{bmatrix}$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

$$A = \begin{bmatrix} \operatorname{var}(y_{1,0}) & \operatorname{cov}(y_{1,0}, y_{1,1}) & \dots & \operatorname{cov}(y_{1,0}, y_{1,n}) \\ \operatorname{cov}(y_{1,1}, y_{1,0}) & \operatorname{var}(y_{1,1}) & \dots & \operatorname{cov}(y_{1,1}, y_{1,n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{1,n}, y_{1,0}) & \dots & \dots & \operatorname{var}(y_{1,n}) \end{bmatrix} \quad B = \begin{bmatrix} \operatorname{cov}(y_{1,0}, y_{2,0}) & \operatorname{cov}(y_{1,0}, y_{2,1}) & \dots & \operatorname{cov}(y_{1,0}, y_{2,n}) \\ \operatorname{cov}(y_{1,1}, y_{2,0}) & \operatorname{cov}(y_{1,1}, y_{2,1}) & \dots & \operatorname{cov}(y_{1,1}, y_{2,n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{1,n}, y_{1,0}) & \dots & \dots & \operatorname{var}(y_{1,n}) \end{bmatrix} \quad B = \begin{bmatrix} \operatorname{cov}(y_{1,0}, y_{2,0}) & \operatorname{cov}(y_{1,1}, y_{2,1}) & \dots & \operatorname{cov}(y_{1,1}, y_{2,n}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{1,n}, y_{2,0}) & \dots & \dots & \operatorname{cov}(y_{1,n}, y_{2,n}) \end{bmatrix}$$

$$C = \begin{bmatrix} \operatorname{var}(y_{2,0}) & \operatorname{cov}(y_{2,0}, y_{2,1}) & \dots & \operatorname{cov}(y_{2,0}, y_{2,m}) \\ \operatorname{cov}(y_{2,1}, y_{2,0}) & \operatorname{var}(y_{2,1}) & \dots & \operatorname{cov}(y_{2,1}, y_{2,m}) \\ \dots & \dots & \dots & \dots \\ \operatorname{cov}(y_{2,m}, y_{2,0}) & \dots & \dots & \operatorname{var}(y_{2,m}) \end{bmatrix}$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

or

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{a} \\ \mathbf{c} \end{bmatrix}, \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}\right)$$
$$p(\mathbf{y}_1) = \int p(\mathbf{y}_2, \mathbf{y}_1) \, \mathrm{d}\mathbf{y}_2$$

SO

1

Martin the

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

or

SO

 $p(\mathbf{y}_1) = \mathcal{N}(\mathbf{a}, A).$

ז ק

Martin Charle

$$p(\mathbf{y_2}|\mathbf{y_1}) = \frac{p(\mathbf{y_1},\mathbf{y_2})}{p(\mathbf{y_1})}$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \frac{p(\mathbf{y_1},\mathbf{y_2})}{p(\mathbf{y_1})}$$

$$p(\mathbf{y_1},\mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$$
$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

A linear operator on y1

$$p(\mathbf{y}_2 | \mathbf{y}_1) = \frac{p(\mathbf{y}_1, \mathbf{y}_2)}{p(\mathbf{y}_1)}$$
$$p(\mathbf{y}_1, \mathbf{y}_2) = \mathcal{N}\left(\begin{bmatrix}\mathbf{z}\\\mathbf{z}\end{bmatrix}\right)$$
$$p(\mathbf{y}_2 | \mathbf{y}_1) = \mathcal{N}(\mathbf{c} + \mathbf{z})$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^-$$

A linear operator on y1

 $\begin{bmatrix} \mathbf{a} \\ \mathbf{c} \end{bmatrix}, \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$ $p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}B^T)$ $A^{-1}B^T$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \frac{p(\mathbf{y_1},\mathbf{y_2})}{p(\mathbf{y_1})}$$

$$p(\mathbf{y_1},\mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(\mathbf{c} + BA^{-1}(\mathbf{y_1} - \mathbf{a}), C - BA^{-1}$$

$$p(\mathbf{y_2}|\mathbf{y_1}) = \mathcal{N}(BA^{-1}(\mathbf{y_1}), C - BA^{-1}B^T)$$

Kernel Choice: What if I triple the value of l?

Prior

HYPERPARAMETERS

- KERNELS HAVE PARAMETERS WHICH WE WILL CALL HYPERPARAMETERS.
- HYPERPARAMETERS CAN HAVE A BIG IMPACT.
- WANT TO ESTIMATE HYPERPARAMETERS!

$\arg \max \log p(\mathbf{y}|\boldsymbol{\theta})$

Marty M

Applying Gaussian Processes

Martin the

Applying Gaussian Processes

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

celerite

celerite \se.le.<code>wi.te\</code> *noun*, *archaic literary* A scalable method for Gaussian Process regression. From French célérité.

https://celerite.readthedocs.io/en/stable/

https://github.com/dfm/celerite

celerite

celerite \se.le.<code>ki.te\</code> *noun*, *archaic literary* A scalable method for Gaussian Process regression. From French célérité.

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION

- ALL THE GOOD STUFF IS UNDER THE HOOD.

NUMBER OF COMPONENTS.

• CELERITE HAS KERNELS THAT REPLICATE PHYSICAL

PROCESSES.

• CELERITE IS FAST O(N, I²). N IS NUMBER OF DATA POINTS, I IS

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION

- BUILD KERNELS (SUM COMPONENTS)
- Use mean model functions
- GET LIKELIHOOD VALUES
- EXPLORE PARAMETER SPACE WITH THE ALGORITHM OF YOUR CHOICE (E.G., SCIPY, MCMC, EMCEES ...)

Celerite - Kernel Examples - Real Term

$$k(t_i, t_j) = a \exp(-c |t_i - t_j|)$$

 $a = 1, c = 0.01$

Mar M

Celerite - Kernel Examples

Mar Mar

Celerite - Kernel Examples - White Noise (Jitter in Celerite)

Mar Mar Mar

Ja 4000 Mod 3000

$$S(\omega) = \sqrt{\frac{2}{\pi}} \frac{S_0 \omega_0^4}{(\omega^2 - \omega_0^2)^2 + \omega_0^2 \omega^2 / Q^2}$$

$$S(\omega) = \sqrt{\frac{2}{\pi}} \frac{S_0 \omega_0^4}{(\omega^2 - \omega_0^2)^2 + \omega_0^2 \omega^2/Q^2}$$

_

 $S(\omega) = \sqrt{\frac{2}{\pi}} \frac{S_0 \omega_0^4}{(\omega^2 - \omega_0^2)^2 + \omega_0^2 \omega^2/Q^2}$

10° 10⁻¹ 10⁻² 10⁻³

$$S(\omega) = \sqrt{\frac{2}{\pi}} \frac{S_0 \omega_0^4}{(\omega^2 - \omega_0^2)^2 + \omega_0^2 \omega^2/Q^2}$$

Celerite - Term addition

Celerite - Term Addition

Ignore the scale NxM Issue ...

Index

Celerite - Mean Function Examples

MEAN FUNCTIONS ARE USEFUL FOR DETERMINISTIC FUNCTIONS

- PLANET RV SIGNAL
- PLANET TRANSIT SIGNAL
- VERY HIGH Q PULSATIONS
- ALIEN (DELIBERATE) COMMUNICATION SIGNALS

Mar M

Celerite - Likelihood Calls

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION • GET LIKELIHOOD VALUES

$$p(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{c}\end{bmatrix}, \begin{bmatrix}A & B\\B^T & C\end{bmatrix}\right)$$

or

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{a} \\ \mathbf{c} \end{bmatrix}, \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}\right)$$
$$p(\mathbf{y}_1) = \int p(\mathbf{y}_2, \mathbf{y}_1) \, \mathrm{d}\mathbf{y}_2$$

SO

$$p(\mathbf{y}_1) = \mathcal{N}(\mathbf{a}, A).$$

Martin Mart

Celerite - Likelihood Calls

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION

- Get likelihood values
- CELERITE INCLUDES A BASIC PRIOR FUNCTIONALITY (E.G., BOUNDS)
- YOU MIGHT WANT TO APPLY MORE ELABORATE PRIORS

when had

Celerite - Exploring the parameter space

VARIOUS WAYS TO EXPLORE THE

PARAMETER SPACE

• MLE

- - -

- MCMC
- NESTED SAMPLING
- INTEGRATION

Celerite - Making Predictions

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION

- CELERITE INCLUDES A PREDICT METHOD
- COUPLE PREDICT WITH YOUR POSTERIOR INFERENCE
- DECIDE WHAT YOU WANT TO SHOW (I.E.,

INCLUDING OR EXCLUDING OBSERVATIONAL UNCERTAINTY)

Session 3 - Correlation in the data

Motivation - Correlation in the data

An introduction to a Gaussian Process

Applying Gaussian Processes

An introduction to Celerite

KEY TAKE AWAYS FROM THIS WEEK/SESSION:

- Noise can correlated as a result of physical processes
- Don't neglect correlation
- A GP is an extension of a multivariate normal distribution
- A GP has very interesting properties that we can use to model correlated noise
- \bullet There are a bunch of GP software implementations but one that ties in nicely with a physical interpretation is Celerite

