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Session 3 - Correlation in the data

 Section 1 ~30 Mins Motivation - Correlation in the data

 Section 2 ~40 Mins An introduction to a Gaussian Process

Section 2.1 ~40 Mins Applying Gaussian Processes

Section 3 ~30 Mins An introduction to Celerite



KEY TAKE AWAYS FROM THIS WEEK/SESSION:

• NOISE CAN BE CORRELATED AS A RESULT OF PHYSICAL PROCESSES

• DON’T NEGLECT CORRELATION

• A GP IS AN EXTENSION OF A MULTIVARIATE NORMAL DISTRIBUTION

• A GP HAS VERY INTERESTING PROPERTIES THAT WE CAN USE TO MODEL CORRELATED NOISE

• THERE ARE A BUNCH OF GP SOFTWARE IMPLEMENTATIONS BUT ONE THAT TIES IN NICELY 
WITH A PHYSICAL INTERPRETATION IS CELERITE
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MOTIVATION - TIME SERIES ANALYSIS

KEY TAKE AWAYS:

• NOISE CAN BE CORRELATED BUT WE CAN DEAL WITH THIS

• PHYSICALLY, THE CURRENT STATE DEPENDS ON THE PREVIOUS STATE

• FOR SOME THIS IS NOISE

• FOR OTHERS THIS IS SIGNAL
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GP’S - SOURCES OF INFORMATION

• HTTP://WWW.GAUSSIANPROCESS.ORG/GPML/  RASMUSSEN & WILLIAMS 
2006

• YOU TUBE - J CUNNINGHAM : MLSS 2012

• YOU TUBE - RICHARD TURNER : ML TUTORIAL GAUSSIAN PROCESSES

• HTTP://KATBAILEY.GITHUB.IO/POST/GAUSSIAN-PROCESSES-FOR-
DUMMIES/

http://www.gaussianprocess.org/gpml/
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DEFINITION OF A GP

LOOSELY - A MULTIVARIATE GAUSSIAN OF INFINITE LENGTH



DEFINITION

NOT SO LOOSELY:
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APPLYING GAUSSIAN PROCESSES

NOTE: FORM FROM RW06
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APPLYING GAUSSIAN PROCESSES

KERNEL CHOICE:

• FUNCTIONAL FORM OF THE KERNEL DEFINES THE 
TYPES OF FUNCTIONS YOU WILL GET.

• CHOOSE YOUR KERNEL WISELY.

• THIS SE KERNEL HAS TWO PARAMETERS.

• THIS IS THE POINT AT WHICH YOU ENCODE YOUR 
PRIOR KNOWLEDGE.
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APPLYING A MULTIVARIATE NORMAL PRIOR
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WHAT IF THERE WAS A WAY TO EVALUATE ALL THE 
FUNCTIONS FOR A GIVEN PRIOR!
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A linear operator on y1 Your Prior 
Constraint from new 

information 
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APPLYING GAUSSIAN PROCESSES

KERNEL CHOICE: WHAT IF I TRIPLE THE VALUE OF L?

POSTERIORPRIOR



APPLYING GAUSSIAN PROCESSES

HYPERPARAMETERS

• KERNELS HAVE PARAMETERS WHICH WE WILL CALL 

HYPERPARAMETERS.

• HYPERPARAMETERS CAN HAVE A BIG IMPACT.

• WANT TO ESTIMATE HYPERPARAMETERS!
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CELERITE

https://celerite.readthedocs.io/en/stable/

https://github.com/dfm/celerite



CELERITE

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION 

•  ALL THE GOOD STUFF IS UNDER THE HOOD. 

• CELERITE IS FAST O(N, I2). N IS NUMBER OF DATA POINTS, I IS 

NUMBER OF COMPONENTS. 

• CELERITE HAS KERNELS THAT REPLICATE PHYSICAL 

PROCESSES.



CELERITE

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION 

• BUILD KERNELS (SUM COMPONENTS) 

• USE MEAN MODEL FUNCTIONS 

• GET LIKELIHOOD VALUES 

• EXPLORE PARAMETER SPACE WITH THE ALGORITHM OF YOUR CHOICE 

(E.G., SCIPY, MCMC, EMCEES …)
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CELERITE - KERNEL EXAMPLES - WHITE NOISE (JITTER IN CELERITE)
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CELERITE - TERM ADDITION

+ + + …



CELERITE - TERM ADDITION

+ + =

IGNORE THE SCALE NXM
ISSUE …



CELERITE - MEAN FUNCTION EXAMPLES

MEAN FUNCTIONS ARE USEFUL FOR DETERMINISTIC FUNCTIONS  

• PLANET RV SIGNAL 

• PLANET TRANSIT SIGNAL 

• VERY HIGH Q PULSATIONS 

• ALIEN (DELIBERATE) COMMUNICATION SIGNALS 

• …
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CELERITE - LIKELIHOOD CALLS

A SCALEABLE METHOD FOR 1D GAUSSIAN PROCESS REGRESSION 

• GET LIKELIHOOD VALUES 

• CELERITE INCLUDES A BASIC PRIOR FUNCTIONALITY (E.G., BOUNDS) 

• YOU MIGHT WANT TO APPLY MORE ELABORATE PRIORS



CELERITE - EXPLORING THE PARAMETER SPACE

VARIOUS WAYS TO EXPLORE THE 
PARAMETER SPACE 

• MLE 

• MCMC 

• NESTED SAMPLING 

• INTEGRATION 

• …

Sigma

P

P



CELERITE - MAKING PREDICTIONS

A SCALEABLE METHOD FOR 1D GAUSSIAN 
PROCESS REGRESSION 

• CELERITE INCLUDES A PREDICT METHOD 

• COUPLE PREDICT WITH YOUR POSTERIOR 
INFERENCE 

• DECIDE WHAT YOU WANT TO SHOW (I.E., 
INCLUDING OR EXCLUDING OBSERVATIONAL 
UNCERTAINTY)
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