Living With the Sun

J.G. Luhmann, Space Sciences Lab, Univ. of California, Berkeley

Highlighting the work of many, including those who sponsor
missions, ground-based programs, data systems, and modeling
projects

52nd ESLAB Symposium, ESTEC, May 2018




Solar Interior Structure: A Nuclear Furnace

Core
— Contains nuclear reactions
— T~15x10°K; P=1.6x10° kg - m*
— Outto 0.25 R
Radiative Zone
— Energy transfer by photons comantion A8
— Outto0.75 RS Coronal Loops
— Top is the tachocline; T = 5 x 10°K
Convection Zone Coronal
— Heat transfer by fluid motions  ———
— Region of solar dynamo ggiednunes/
— Top is the photosphere; T —5785K
— Number density about 1023m™

Surface of Sun defined by radius at
which photons can escape

Corona

Chromosphere
Photosphere

Cut-away diagram illustrating solar interior,
and atmospheric regions and features.

Prominences



The more variable ionizing emissions play the major role in defining the
planetary obstacles to the solar wind, and allow ionized constituents to
be affected by electric and magnetic fields

Largest variations are in XUV/EUV
Irradiance Change: (Max-Min)/Min
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The available image wavelengths allow investigations of
the emission processes and related solar features

Photosphere chromosphere-transition region corona

Nal589.6nm white light

Wavelength:  X-ray EUV uv VIS IR



But what influences all these and other outputs?:

Sunspots are
a very small part
of the picture

Magnetographs making regular observations, some at high
spatial and time resolution, transformed much thinking

SOLAR MAGNETIC FIELDS DETERMINE MUCH OF
WHAT WE EXPERIENCE IN THE HELIOSPHERE.

(NSO SOLIS magnhetogram (right) and matching visible light image)



What lies beneath(?)

Helioseismology revealed a lot of this
iInformation. Now, simulations of field
generation in the solar convection
zone make ‘wreaths’ of twisted
toroidal fields that go through Sun-like
magnetic polarity cycles (colors below

Helioseismology results Indicates handedness of twist).
from MSFC website
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One new picture: Brown et al., ApJ 2011
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(Observed emerging flux
from B. Schmieder, in
Scholarpedia, and Strous
1997 PhD thesis (above),
Magara et al., ApJ 2004
simulation (right))

The appearances of active
region fields and associated
features on the Sun can be
reproduced by numerical
simulations of emergence
of strong flux tubes from

below -
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In the ‘gray’ background: additional
“Quiet Sun” or “Magnetic Carpet” Fields are seen

High resolution images, magnetograms, and dopplergrams
suggest small scale fluxes of both sign are convected to and

collect in the supergranule boundaries.
5", R .i""i :

Supergranules and their associated
Vertical motions seen as Doppler shifts
(Scales are ~35Mm)
Black-inward fields, white-outward
fields in SOHO MDI magnetograms
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The active region and smaller scale fields interact

Coronal Large Scale and “Open’” Fields
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Resulting in a diffusion-like spreading and decay of emerged fields



In addition, the emerged fields behave as if advected by
the observed large-scale surface flows

Differential
rotation

Meridional
flow
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The global picture?

Near Surface Shear
Layer plus Magnetic Carpet

Net Surface
Meridional Flow

Toroidal

Meridional Flux Ropes

Circulation Cells

Emerging Flux Ropes

Convection (Active Regions)
Zone
Tachodine Fragmentation

of Rising Flux Ropes



The resulting global solar field’s evolution with activity is
seen in sequences of solar surface field maps (here from

GONG) showing active region emergence and redistribution

in action (2009-2012)
Fab 2009 Jan 2009
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| Sample synpti mps of the photosperic field illustrate the
solar cycle changes in the global solar surface field and hence

the heliosphere’s cycling inner boundary condition
(synoptic maps from SOHOMDI of CR 1915-1917, 1934-1936, and 1960-1962)




In this picture the polar fields are simply ‘survivors’ of a cycle’s
emerged flux

Joy's Law
(AR Tilt Rule)

Active region ‘tilt’
IS also a key factor
In what survives
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Meanwhile related coronal heating leads to emissions
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It's complicated and probably involves multiple
processes. Observations suggest waves, currents,
reconnection, and shocks may all be involved



Note it is the hot coronal
loops forming over changing
active regions (here seen in
Soft X-rays and fields (images
from NSO and Yohkoh SXT))
that cause the solar cycle
variations in atmospheres.

Coronal heating and
brightness depend on the
field strength and geometry
(Solar minimum is at

center. LMSAL figures.)



A conseguence of the hot coronal plasma pressure Is
the opening of some coronal fields and related escape
of coronal plasma as solar wind-

Coronal
streamers

- ()
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SOHO LASCO C2 coronagraph (left) and EIT (right) images

Interpretation of these images —including the “coronal
holes”, requires knowledge of the solar field



e.g. One cannot simply look
at a photospheric field map
and tell what the corona’s
structure is like.

But the synoptic maps can
be used to construct various
coronal field models, e.qg.
ggg’gd the Potential Field Source
py field  surface (PFSS) models,
'polarity  developed in the late 60s

— and since widely used.
“helmet streamer” belt

(outermost closed fields
encircling the Sun)

Fields

gong.nso.edu/data/magmap/pfss.html provides models and archives
(G. Petrie website)



This information has changed
the way we see the corona and
Interpret related heliospheric
observations. Taking into
account its non-dipolar nature
has been especially important.
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Streamer
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This shift in coronal structure
view has been particularly
Important in moving beyond
------------ the dipolar concepts of the

| corona and solar wind

J. De Keyser, 1999

North Polar Coronal Hole
with Extension

‘ Pseudostreamer
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With it we can describe the observed coronal holes. e.g. The
open field footprints seen here at the start of the STEREO
mission in early 2007, when the large scale coronal field
looked like a gently warped dipole

STERED Behind EUVI 135

STERED Aheod EUWI 125

(SECCHI and SOHO EIT EUV Images from STEREO Science Center and
PFSS models from the GONG website)



-and later when the streamer belt became extremely warped
with large pseudostreamers, and low latitude coronal holes
prevailed

SECCHI EUV and SDO AIA Images from STEREO Science Center and
PFSS models from the GONG website



Such models illustrate how ecliptic solar wind
source regions change with time

PFSS field lines mapping to the ecliptic, showing Earth and
STEREO connections for 2007-2012. Open fields are color
coded by open field polarity (sign of radial component) (from

the GONG website)



-and how the global distributions of solar wind sources
evolve over the solar cycle

Omni 27 day SSN vs CR Open Field Locations vs CR
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Note that Polar Coronal Holes do not migrate between
hemispheres, but vanish at max and then return anew

Ubpdated from Luhmann et al.. JGR 2002



Modeling Solar Wind Structure

OMN| daily V and B polarlty vs WSA Model, Days 1-100
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Models now exist that propagate accurate coronal hole
streams outward and produce the observed solar wind

structure
(Here the WSA-ENLIL model (Odstrcil et al., 2004 JASTP)

and STEREO measurements (right) fitted to model



Interactions of the Solar Wind streams from the different
coronal hole source regions (SIRs-or CIRs) can also make

significant interplanetary field and plasma disturbances
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Coronagraph and Heliospheric Imager movies also show
the constant shedding of small structures from the
streamer belt that affects the stream boundaries
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Various streamer boundary reconnection styles are invoked
to explain them. These’blobs move at low solar wind speeds



But coronal transients have a spectrum of sizes and speeds:
At the ‘extreme’ end are the CMEs

Ways of Changing Open/Closed
Regions on the Photosphere
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ldeas on where
these get their
extra energy
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The associated CMEs can take many forms

‘Flux preserving’ Active
Region eruptions-




Departing CMEs undergo rotations, distortions, deflections

Some are from internal or source-related forces (e.g. rotation,
expansion), some from interaction with the surrounding structure.




Some ICME ejecta can be fitted with flux rope models
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The resulting interplanetary disturbances have “polarities”
related to their solar sources and evolution

N-S Polarity _ S-N Polarity
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Magnetized planets have much different responses to ICMEs
depending on their magnetic field orientations and strengths



The Flux-rope type ICMEs show ‘polarity’ preferences that
vary with the solar polar field cycle
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Statistically, CME/ICME occurrence varies with the
solar cycle and ICME speeds look like solar wind
speeds. Only a few are very fast (>1000 km/s)
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While they produce enhanced solar wind
parameters, in part from their ambient flow
interaction, most ICMEs have little more than
typical solar wind speeds at 1 AU
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What other consequences do interplanetary counterparts of
CMEs, ICMEs, add to the picture?
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Fast ICMEs may have leading shocks, and generally have
compressed solar wind sheaths leading the arrival of the
coronal ejecta. The shocks are important sources of SEPs




Log

SEPS, Solar Energetic Particles, are typically the
first sign of a major ICME to arrive at an observer

Typical Signatures: Earth-Directed Event Timing
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One can use simplified ejecta launched into solar wind
models to model the shock arrival, but also the shock transit
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(WSA-ENLIL simulation of July 2012 events with simplfied ‘cone model’ CMEs
(from Odstrcil and Mays, NASA GSFC CCMC run)



One can then take a model shock and observer-connected
Interplanetary field lines and approximate what SEPs from
that source any observer will experience
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This relatively simple example (e.g. with isolated,
spread out CMESs) illustrates such results: e.q.
March 2013
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This allows us to connect SEP observations at multiple sites created by any shock(s)
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Real-time multipoint SEP
events in early April
2013 —ACE and STREREO



Like ICMEs, SEP fluxes vary with the phase and strength of
solar activity. At the same time, the Galactic Cosmic Ray (GCR)
flux varies in antiphase with solar activity, being excluded or
swept from the heliosphere by the solar wind disturbances
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Cycle 24 Sunspot Number (V2 O) Prediction (2016/10)
Rem&thber that What we find at every planet will

depen on t e‘ iff ht levels and detalls of solar
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We cannot study the planets without knowing the Sun...



An update



The Sun and its effects have been changing since the space age began,

with numerous downward trends following declining sunspot activity
_ OMNI 27d'ay averaged.data

250

< g

v

i I|IIIIIIIIIlIIII|IIII|III
L1111 IIIIIIIIIlIIII|IIII|III

50

1660 1760 1860 1960 2060 2160

12

IMF (nT)

1760 1860 1960 2060 2160

600
500
400
300

Fl‘ll”lﬂ I IIIIIIE|IIII [ I|I |||||||||||||
(o)}
o)
o
IIII|IIIIIIIII [ITHIT IIIIIIIII|IIII

V (km/s)

1760 1860 1960 2060 2160

= [T
=)}
o)
o

N{(cm-3)

1760 1860 1960 2060 2160
Carrington Time (CRs)



The solar magnetic field state has been characterized not only
by weakening magnitudes.... (Mean Field-WSO magnetograph)
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e.g. but the effective dipolar field component of the surface field
at solar minima has declined more rapidly than higher order harmonics

Multipoles from WSO Radial: ghds.250R.power.ds
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This has meant more coronal structure at low solar activity,
more low latitude coronal holes, more pseudostreamers etc.
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Solar cycle 24 has had low solar wind fields and densities

Lan Jian- series of plots from OMNI data
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One result has been lower ambient Alfven and magnetosonic
speeds that have been easier to exceed. eg. by CMEs
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Perhaps in part because of this, the weak cycle has still
had significant SEP events. GCR Fluxes have been higher.
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