Mars Dayglow, Nightglow & Aurora observed by MAVEN's Imaging UltraViolet Spectrograph

ESLAB Conference on Comparative Aeronomy
Nick Schneider, Matteo Crismani + the MAVEN IUVS/Remote Sensing Team
Mars Dayglow, Nightglow & Aurora observed by MAVEN/IUVS

1. Dayglow: Response to strong flares and seasonal variation in the lower atmosphere

2. Nightglow: Revealing atmospheric circulation and tides

3. Aurora: Surprisingly common, and three distinct types
The MAVEN Spacecraft

- Launch (Wet) Mass: 2455 kg at launch
- Spacecraft Dry Mass: 810 kg at launch
- Power: 1135 W at Mars Aphelion
IUVS, NGIMS and STATIC are located on the Articulated Payload Platform (APP) which uses two gimbals to orient one instrument axis.

During most normal operations, the spacecraft flies with solar arrays and body-mounted instruments exactly sun-pointing.

2-axis gimbals allow IUVS to observe at >50% duty cycle, obtaining limb scans, coronal scans and disk maps.
IUVS Unique Characteristics

- Imaging spectroscopy via gimbals & scan mirror
- Multiple observing modes at >50% duty cycle
- 3 channels optimized for different science
- Unique orbit spans 150km to \(\sim 2 \, R_M \) altitude
- Full suite of particles & fields instruments
- Addresses issues across planetary science
1. Dayglow studies: periapse limb scans

- IUVS obtains 12 vertical scans during periapse on >50% of all orbits
- Dataset now includes thousands of orbits spanning two Mars years
Mars UV Dayglow Spectrum: *not a model*

- Nearly 200 orbits, 60 hours total integration
- Most emissions from CO₂ dissociation and ionization products (Barth+ 71)
- Early observations demonstrated IUVS’s ability to document changes
- Solid curves show dayglow is brighter, higher, and more vertically extended when Mars is closer to the Sun and solar activity is higher
Two Martian Years: multiple influences reveal themselves

- Scale heights have varied significantly over the mission. What are the drivers?
Two Martian Years: multiple influences reveal themselves

- Scale heights (black) respond to changing distance (red) and declining solar activity (green, orange)
Two Martian Years: multiple influences reveal themselves

- Peak altitude (red) tracks scale height … except around Ls~250
- Dust storm activity at that time puffed up lower atmosphere, raising the thermosphere without heating it further
- Southern hemisphere summer is when many Mars phenomena are enhanced
September 2017: the thermosphere responds to an X-class flare

- X-class flare observed by MAVEN/EUVM (also measured at Earth)
- Thermosphere warmed 70K during the flare, and rapidly cooled
- Flare effects from photons <10nm reached down to 90km altitude
2. Nitric Oxide (NO) Nightglow at Mars

• Nightglow reveals global circulation patterns and especially their seasonal and latitudinal variations.

• N$_2$ and CO$_2$ photo-dissociated in the dayside thermosphere by EUV photons and electron impact (~140 km)

• O and N atoms travel to nightside and recombine, emitting distinct UV signal (~70km).

• NO nightglow traces inter-hemispheric transport in the thermosphere and downward fluxes in the nightside

• IUVS studies NO nightglow using limb scans and global images
First Global Images Show Both Expected and Surprising Features

May 4, 2016 during late winter in Mars Southern Hemisphere. Orbit 3102 – Ls 147

- As expected, emission is bright at the winter pole, where air descends, causing recombination
- Splotches and streaks in equatorial regions near the limb are surprisingly strong
Prominent wave-3 structure observed at equatorial latitudes in both limb-scans and global images.

Studies of local time behavior will help identify the type of wave (e.g., stationary vs other non-migrating waves).

GCM modeling not yet matching latitudinal gradients (too strong).
3. Auroral Processes on Mars: Comparison with Earth

• Aurora at Mars are common, but are not like Earth’s as Mars lacks a global magnetic field
The September 2017 Space Weather Event: Brightest Mars aurora on record

12 Sept 02:58
Diffuse aurora 25x brighter than any past event, enabling first images.

- Aurora effectively global, as “expected” for unmagnetized planet
- Caused by solar energetic protons or electrons (can’t tell)
- Emission peaks at 60 km – energy deposited very deep!
First Imaging of Mars Discrete Aurora

- Spectra examine pixel by pixel: purple letters indicate aurora; orange indicates noise or artifact.
- Most auroral features line up with gaps between closed field lines.
- Many other orbits had favorable viewing of crustal fields but no significant emissions.
- Confirms discrete aurora behavior discovered by MEX/SPICAM.
- Observed only in the declining phase of the solar event, also confirming SPICAM results.

Red indicates high probability of closed field line at 400km based on MGS pitch angle data (Brain 2007).
Discovery of Proton Aurora at Mars

- First observation of predicted Martian proton aurora; first detection on a planet beyond Earth
- More frequent during southern hemisphere summer, probably due to enhanced H corona, escape, etc.

Deighan+ 2018
Mars Proton Aurora

how it works

The lack of a global magnetic field enables aurora over the whole dayside.
IUVS has discovered two forms of aurora (diffuse, proton) made possible by the lack of a global magnetic field. Global magnetic fields should be considered both the cause and prevention of different types of aurora.
Mars Dayglow, Nightglow & Aurora observed by MAVEN/IUVS

1. Dayglow: Response to strong flares and seasonal variation in the lower atmosphere

2. Nightglow: Revealing atmospheric circulation and tides

3. Aurora: Surprisingly common, and three distinct types
So many phenomena, so little time…

<table>
<thead>
<tr>
<th>Limb Scan (Periapse, coronal)</th>
<th>Disk & coronal Scan</th>
<th>Apoapse Disk Imaging</th>
<th>Stellar Occultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dayglow</td>
<td>H corona, O Corona</td>
<td>Ozone</td>
<td>Altitude profiles</td>
</tr>
<tr>
<td>• CO2 etc., N2, H, O</td>
<td>• escape</td>
<td>• polar vortex</td>
<td>• CO2, O2</td>
</tr>
<tr>
<td>• n(z), T(z)</td>
<td>• Seasonal changes</td>
<td>• Rossby waves</td>
<td>• n(z), T(z)</td>
</tr>
<tr>
<td>• variability</td>
<td></td>
<td>• seasonal changes</td>
<td>• ozone, aerosols</td>
</tr>
<tr>
<td>• tides</td>
<td></td>
<td></td>
<td>• day: OK, night:OK!</td>
</tr>
<tr>
<td>• meteoric metals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Nightglow** (NO) | | Clouds | |
| | | • nadir, limb | • Gravity waves |

| **Aurora** (3 types) | | Albedo, dust | |

| **Limb clouds** (mesosphere) | | Rayleigh scattering | |

| **D/H** | | Nightglow (NO) | |
| **Miscellaneous** | | | |

| **Atomic O 130nm triplet** | Purple indicates other presentations at this meeting | | |

Misc.			
• Past-terminator clouds			
• Rover overflights			
• Phobos			