

PROTONATED IONS AND THE SEASONAL VARIATION OF HYDROGEN OBSERVED BY MAVEN NGIMS

<u>Shane W. Stone</u>,¹ Roger V. Yelle,¹ Mehdi Benna,² Meredith K. Elrod,² Paul R. Mahaffy²

> ¹Lunar and Planetary Laboratory, University of Arizona, USA ²NASA Goddard Space Flight Center, USA

52nd ESLAB Symposium 2018/05/14

INTRODUCTION

- H escape to space could account for the loss of 85% of the initial water inventory of Mars over the last 4 billion years. (*Villanueva et al.* (2015), *Mahaffy et al.* (2015), *Krasnopolsky* (2015))
- Previous investigations have found temporal variations of an order of magnitude or more in the hydrogen density in the upper atmosphere of Mars, implying a similar variation in the hydrogen escape rate. (*Chaffin et al.* (2015), *Bhattacharyya et al.* (2015), *Clarke et al.* (2017))
- H₂, a product of the photolysis of H₂O in the lower atmosphere, diffuses upward where it can react with ions to form protonated species such as HCO₂⁺, HCO⁺, OH⁺, HNO⁺, H₂⁺, and H₃⁺.
 - **H** is formed by these reactions and can then escape to space.
- The MAVEN spacecraft descends through the ionosphere every ~4.5 h, down to altitudes as low as ~125 km during Deep Dips (DDs), near the primary (F1) ionospheric peak.
- The Neutral Gas and Ion Mass Spectrometer (NGIMS) aboard MAVEN measures the abundance of 22 atmospheric ions with unit mass per charge (m/z) resolution.

INTRODUCTION

 DD2 (subsolar) mean ion profiles from MAVEN NGIMS.

HNO⁺ is the most abundant protonated species in the NGIMS data; abundance is larger than predicted.

 Using protonated ion densities and simple photochemical equilibrium, we can calculate H and H₂ abundances.

ION VARIATION

 We observe large variations in the abundances of some protonated species, e.g. H₂⁺.

• At least one of these events correlates with the appearance of dust storms in the lower atmosphere near perihelion.

 Are the rapid increases in protonated ions indicative of a rapid increase in the thermospheric H and H₂ abundances?

EFFECT OF SPACECRAFT POTENTIAL

 The spacecraft infrequently charges to large negative voltages (-20 V) during a periapse pass; nominal is 0 to -2 V.

 The abundances of some protonated species, e.g. H₂⁺, show a strong correlation with spacecraft potential.

 Dayside H₂⁺ densities at a CO₂ density of 10⁷ cm⁻³ (~250 km altitude) show a strong correlation with spacecraft potential.

ION VARIATION

- The large peaks observed in protonated ion densities are removed if data from large negative spacecraft potentials are filtered out.
- Obvious variations in the H₂⁺ density remain. Day-night variations appear to be the cause of predominant trends.
- What protonated ions are impacted by spacecraft potential?
- What protonated ions can give us reliable H₂ densities?

EFFECT OF SPACECRAFT POTENTIAL

- Only some protonated ions are affected by spacecraft potential
- Related non-protonated ions seem to be unaffected by spacecraft potential

EFFECT OF SPACECRAFT POTENTIAL

- Some protonated species and related ions are unaffected by spacecraft potential
- Can we use these ion abundances to calculate reliable H₂ densities?

H₂ DENSITIES

 $O^{+} + H_{2} \xrightarrow{k_{1}} OH^{+} + H$ $OH^{+} + CO_{2} \xrightarrow{k_{2}} HCO_{2}^{+} + O$

$$k_1[O^+][H_2] = k_2[OH^+][CO_2]$$
$$[H_2] = \frac{k_2[OH^+][CO_2]}{k_1[O^+]}$$

Only O⁺, OH⁺, and CO₂ densities are required to calculate H₂ densities using the above equations.

 This is a simple system, unaffected by spacecraft potential, which should give us reasonable H₂ densities.

H₂ DENSITIES

 H₂ densities vary with L_s, but MAVEN is precessing in latitude and local time.

 The observed variations must be largely diurnal.

 Are the effects of dust activity still apparent in the data?

DIURNAL VARIATION

- Calculated H₂ densities from ±60° latitude binned on local time.
- Large diurnal variations are observed in the calculated H₂ abundances.
- We are seeing a nighttime "bulge" in the H₂ abundance.
- Similar phenomena have been observed for He at Mars by *Elrod et al.* (2017) and for H at Venus by *Brinton et al.* (1980).

H₂ BULGE

- H₂ abundance rises sharply across either terminator, and the nightside distribution is asymmetric.
- Using temperatures derived from NGIMS neutral Ar measurements (right), it is clear that H₂ accumulates in the coldest regions of the thermosphere.

H₂ Bulge

- On the dayside, H₂ densities are ~10⁶ cm⁻³ near the nominal periapsis of MAVEN (150 km altitude; CO₂ densities of 10⁹ cm⁻³).
- The H₂ abundance rapidly increases on either side of the terminator, up to densities of a ~10⁹ cm⁻³
- These are very high H₂ abundances on the nightside.
- We will continue to investigate the absolute values of the calculated densities.

H₂ Bulge

- Dayside abundances agree well with, e.g., *Krasnopolsky* (2002) and *Fox et al.* (2015), who calculate H₂ densities of ~10⁶ cm⁻³.
- Nightside abundances are more than a factor of 100 higher:
 - Similar variations in the He abundance have been observed and modeled (*Elrod et al.* (2017), next slide)
 - H abundance calculated to vary by a factor of 300 on Venus (*Brinton et al.* (1980))
- Diurnal, latitudinal, and seasonal (dust?) effects may be convolved.

HE BULGE

 Simulations from the Mars Global Ionosphere-Thermosphere Model (M-GITM) predict a factor of ~600 increase in the predawn He abundance during perihelion.

• Diurnal variation is largest near perihelion

SUMMARY

 Large variations in some protonated ion abundances are correlated with very low spacecraft potentials (down to -20 V).

• Not all protonated ions are affected by spacecraft charging. Non-protonated species appear to be unaffected by spacecraft charging.

• We calculate H_2 densities from NGIMS OH⁺, O⁺, and CO₂ densities.

• Large diurnal variations are observed in the calculated H₂ densities.

• Variations in the H₂ abundance due to dust activity may be masked by the relatively large diurnal variations.

FUTURE WORK

• Characterize fully the effects of spacecraft potential on all protonated species.

Calculate H₂ abundances, where possible, using other simple photochemical equilibrium assumptions.

 Calculate H and H₂ abundances using a sophisticated photochemical model which includes NGIMS ions and neutrals and an extensive list of photochemical reactions.

 Characterize the seasonal or dust-storm dependence of observed variation in protonated ions and H₂.

• Investigate, broadly, the photochemical questions that have arisen from the NGIMS data. Shane W. Stone – 2018/05/14