

Characterization of Mars' Persistent Meteoric Ion Layer

M. Crismani¹, N. Schneider¹, J. Plane², J. S. Evans³, S. Jain¹, & J. Deighan¹

¹Laboratory for Atmospheric and Space Sciences, University of Colorado, Boulder ²Department of Chemistry, University of Leeds, Leeds, United Kingdom ³Computational Physics Inc., Springfield, Virginia

Novel Chemistry and Dynamics

- IUVS observations of Mg⁺ emission have prompted:
 - New chemical models
 - Interactions with the ionosphere
 - Reanalysis of previous ionospheric results
- While IUVS/MAVEN orbits Mars, the phenomena discussed herein should be considered for most planetary atmospheres

Cosmic Dust Becomes Meteors

CU/LASP • GSFC • UCB/SSL • LM • JPL

- Cometary debris enters planetary atmospheres at orbital velocities
 - Most material is smaller than 10⁻² g per particle (10% sand grain)
- Terrestrial Meteoric inform:
 - Interplanetary dust environment
 - Cloud nucleation
 - Effects of surface deposition
 - Perturbation of gas-phase atmospheric chemistry

Meteoric Ablation Products

- Carbonaceous chondritic material is broken up and releases Mg, Fe, Na, etc. in the aerobraking region of the atmosphere (70-110 km)
 - Mg are 10.3% of IDP's total mass
- Mg⁺ emission is most readily observed by MAVEN/IUVS in solar fluorescence
- Penetration depth anticorrelated with velocity: faster meteors ablate higher

Spectrum from IUVS with Mg⁺

- Dayside observations of Mg⁺ emission
 - Observations since Oct 2014
- Typical Mg⁺ concentration of ~250 cm⁻³ at 90 km

Diurnal Variation

Mars Atmosphere and Volatile Evolution Mission

information on lifetime

Meteoric Cloud Nucleation

CU/LASP • GSFC • UCB/SSL • LM • JPL

- A novel meteoric chemistry scheme was developed to explain missing Mg emission from IUVS observations
- This leads to the formation of "dirty" ice particles which form condensation nuclei at higher T (~150 K) and high altitude

280 nm Mg⁺ emission from Mars' atmosphere following the Siding Spring Meteor Shower

2014 (Mars) Comet Siding Spring Meteor Shower ZHR ~ thousands or tens of thousands meteors/hour; total mass ~16,000 kg

1833 (Earth)
Leonid Meteor Shower
ZHR ~ thousands or tens of thousands
meteors/hour

ZHR = Zenithal hourly rate

Comparing Major Meteor Showers

Strange Ionospheric Dynamics

- Only Comet Siding Spring meteor shower shows an impact on meteoric layer
- This time period gives insight into strange dynamics, unassociated with the ambient ions
 - Similarly seen in NGIMS data

Strange Ionospheric Dynamics

- Only Comet Siding Spring meteor shower shows an impact on meteoric layer
- This time period gives insight into strange dynamics, unassociated with the ambient ions
 - Similarly seen in NGIMS data

M • JPL

Strange Ionospheric Dynamics

- Only Comet Siding Spring meteor shower shows an impact on meteoric layer
- This time period gives insight into strange dynamics, unassociated with the ambient ions
 - Similarly seen in NGIMS data

- Despite these strange features, concentrations of meteoric ions are never found in excess of 1000 cm⁻³
 - After the Comet Siding Spring shower

Transient Ionospheric Layer

- Radio occultations have observed transient ionospheric layers (M3) with e⁻ densities of 10⁴ cm⁻³
 - Composition of the ion that produces the e⁻ is unconstrained
 - Due to altitude of the layer, this layer is attributed to meteor ablation
- These ionospheric layers were also observed at Venus and Titan
- What are they?

Pätzold+ (2005)

Summary

- IUVS observations of Mg⁺ emission have shown:
 - Meteoric ablation is occurring on Mars, and places constraints on IDP flux
 - Observations of diurnal variation are a tracer for the ionosphere
 - Meteoric smoke particles may be great cloud nuclei
 - Meteoric ions behave unexpectedly, distinct from other ions
 - Transient ionospheric layers require more consideration
- While IUVS is at Mars, these phenomena likely need to be considered for most planetary atmospheres

Invitation for Collaboration

- IUVS observations of Mg⁺ emission exist over a range of conditions
 - Observations since Jan 2015, across Lat, SZA, crustal Bfields, etc.
 - If you have observations and want to compare with IUVS or MAVEN data, contact me matteo.crismani@colorado.edu
- There is lots of data and we welcome collaboration!
 - Meteoric ablation upper limits associated with meteor showers
 - Modeling of cloud nucleation from meteoric smoke particles
 - Modeling nightside ionosphere dynamics and chemistry with Mg⁺
 - Undetermined physics causes anomalous gradients and scale heights
 - The source of low altitude transient ionospheric layers

Geophysical Research Letters

RESEARCH LETTER

10.1002/2015GL063863

Key Points:

- MAVEN/IUVS observed bright emission from vaporized dust in Mars' atmosphere
- The dust originated in an intense

MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars

N. M. Schneider¹, J. I. Deighan¹, A. I. F. Stewart¹, W. E. McClintock¹, S. K. Jain¹, M. S. Chaffin¹, A. Stiepen¹, M. Crismani¹, J. M. C. Plane², J. D. Carrillo-Sánchez², J. S. Evans³, M. H. Stevens⁴, R. V. Yelle⁵, J. T. Clarke⁶, G. M. Holsclaw¹, F. Montmessin⁷, and B. M. Jakosky¹

nature Space Sci Rev (2018) 214:23 geoscience https://doi.org/10.1007/s11214-017-0458-1 PUBLISHED ONLINE: 22 MAY 2017 | DOI: 10 Detection of a persistent meteoric metal layer in Impacts of Cosmic Dust on Planetary Atmospheres the Martian atmosphere and Surfaces M. M. J. Crismani^{1*}, N. M. Schneider¹, J. M. C. Plane², J. S. Evans³, S. K. Jain¹, M. S. Chaffin¹, J. D. Carrillo-Sanchez², J. I. Deighan¹, R. V. Yelle⁴, A. I. F. Stewart¹, W. McClintock¹, J. Clarke⁵, G. M. Holsclaw¹, A. Stiepen⁶, F. Montmessin⁷ and B. M. Jakosky¹ John M.C. Plane¹ · George J. Flynn² · Anni Määttänen³ · John E. Moo Geophysical Research Letters Andrew R. Poppe⁵ · Juan Diego Carrillo-Sanchez¹ · Constantino Listow Unique, non-Earthlike, meteoritic ion behavior RESEARCH LETTER 10.1002/2017GL072635

Key Points:

 First in situ detection of the continuous presence of several

in upper atmosphere of Mars

J. M. Grebowsky¹ D, M. Benna^{1,2} D, J. M. C. Plane³ D, G. A. Collinson^{1,4} D, P. R. Mahaffy¹ D, and B. M. Jakosky⁵ 问

Journal of Geophysical Research: Planets

RESEARCH ARTICLE

10.1002/2017JE005510

Meteoric Metal Chemistry in the Martian Atmosphere

J. M. C. Plane¹ [], J. D. Carrillo-Sanchez¹, T. P. Mangan¹ [], M. M. J. Crismani² [], N. M. Schneider² D, and A. Määttänen³ D

Special Section:

CU/LASP • GSFC • UCB/SSL • LM • JPL

Backup Slides

AU

FN

Because the transient layer (M3) peaked at 10⁴ electrons cm⁻³, ablation cannot be responsible for generating the M3 layer

Independent Scale Heights

- IUVS retrieved background atmosphere doesn't vary
- NGIMS has also seen anomalous scale heights
- Not well correlated to B