Observations and Modeling of Low-Altitude Ionospheric Responses to the 2017 September X8.2 Solar Flare at Mars

<u>Shaosui Xu</u>¹, Ed Thiemann², David Mitchell¹, Frank Eparvier², David Pawlowski³, Mehdi Benna⁴, Laila Andersson², Michael W. Liemohn⁵, Stephen Bougher⁵, Tom Woods², Phil Chamberlin², Sonal Jain², Christian Mazelle⁶

¹Space Sciences Laboratory, University of California, Berkeley, USA ²Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA

³Physics Department, Eastern Michigan University, Ypsilanti, Michigan, USA ⁴NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁵Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA

⁶IRAP, CNRS - University of Toulouse - UPS - CNES, Toulouse, France

Introduction & Motivation

- Main source of dayside ionosphere at Mars:
 - Solar EUV (10-100 nm), creating M2 layer
 - X-ray (< 10 nm), creating M1 layer
- Dayside ion production mainly comes from two processes:
 - I. Initial <u>photoionization</u> from photons, creating ions and photoelectrons
 - II. <u>Electron impact ionization</u> (EII) by photoelectrons
- Solar EUV and X-ray irradiance vary orders of magnitude during a flare, causing variations in ionosphere/thermosphere
 - September 10, 2017, MAVEN encountered the largest flare (X8.2) to date
 - Characterizing ionosphere variation

- Characterizing low-altitude ionospheric response to this flare with SuperThermal Electron Transport (STET) model:
 - Modeling photoelectron flux variations
 - Calculating photoionization rate and Ell rate for ion production
 - Assuming photochemical equilibrium (PCE, <200 km): obtain O_2^+ and CO_2^+ densities
- STET solves superthermal electron flux ψ in time (t), spatial distance along a single magnetic field (s), electron energy (E), and pitch angle μ :

$$\frac{\beta}{\sqrt{E}}\frac{\partial\psi}{\partial t} + \mu\frac{\partial\psi}{\partial s} - \frac{1-\mu^2}{2}\left(-\frac{F}{E} + \frac{1}{B}\frac{\partial B}{\partial s}\right)\frac{\partial\psi}{\partial\mu} + EF\mu\frac{\partial}{\partial E}\left(\frac{\psi}{E}\right) = Q + S_{ee} + \sum_{\alpha}\left(S_{e\alpha} + S_{e\alpha}^* + S_{e\alpha}^+\right) + \sum_{i}\left(S_{ei} + S_{ei}^* + S_{ei}^-\right)$$

- Overview of the flare event
- Three periods are selected: pre-flare, peak-flare, post-peak flare

- EUV inputs to STET:
 - EUV spectra from a spectral model [Thiemann et al., 2018], similar to FISM

- Main inputs to STET:
 - O and CO₂ density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM (Mars-Global Ionosphere Thermosphere Model) for <u>below and above</u> MAVEN periapsis, respectively
 - Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from MGITM
 - Only TWO Neutral and thermal plasma available:
 - Pre-flare and peak-flare: pre-flare profiles
 - Post-peak flare: post-peak profiles

Data-Model Comparison of Photoelectron Spectra

- Thick black and blue energy spectra from SWEA (Solar Wind Electron Analyzer) observations
- Thin black, blue, and red energy spectra from STET modeling
- Typical ionospheric photoelectron spectral features: He-II peak, knee, O Auger peak
- Mostly in good agreement
 - Within 30% for < 60 eV and 200-500 eV
 - Modeled solar irradiance spectra are very accurate for EUV & X-ray ~17-60 nm, 1-6 nm, correspondingly

Data-Model Comparison of Photoelectron Spectra

- Auger electrons
 - Soft X-ray ionizing inner-shell electrons of C, O, N
 - Resultant ions deexciting through emitting Auger electrons
 - At fixed energies: C~250 eV, N~360 eV, O~500 eV ~
- C Auger electron peak in both modeled and observed photoelectron spectra
 - Being consistently observed over 4 min during this flare event

A Clearer Example of Carbon Auger Electrons From SWEA

This provides a clear and unambiguous identification of the carbon Auger peak in the electron energy spectra in the Martian ionosphere for the first time.

• Ion Densities calculated assuming photochemical equilibrium:

R1:
$$CO_2 + h\nu \rightarrow CO_2^+ + e$$
 [STET]
R2: $CO_2^+ + O \rightarrow CO + O_2^+; k_2 = 1.64 \times 10^{-10}$
R3: $CO_2^+ + O \rightarrow CO_2 + O^+; k_3 = 9.6 \times 10^{-11}$
R4: $O^+ + CO_2 \rightarrow O_2^+ + CO; k_4 = 1.1 \times 10^{-9}$
R5: $CO_2^+ + e \rightarrow CO + O; k_5 = 4.2 \times 10^{-7} (300/\text{Te})^{0.75}$
R6: $O_2^+ + e \rightarrow O + O; k_6 = 2.4 \times 10^{-7} (300/\text{Te})^{0.7}$

 $CO_2^+ + O ----> O_2^+ + CO$ Source for O2+ Loss for CO2+, depending on n(O)

Schunk and Nagy [2009]

• From R1-R6, we can obtain:

$$n(O_2^+) = \sqrt{(k_2 + k_3)n(CO_2^+)n(O)/k_6}$$
 (R2, R3, R4, R6)

$$n(CO_2^+) = \frac{P(CO_2^+)}{(k_2 + k_3)n(O) + k_5n(O_2^+)}$$
(R1, R2, R3, R5)

• From model:

- Solid lines: CO2+ and O2+ densities for 3 periods
- From observations:
 - LPW e- density (*1.4) and NGIMS CO2+ density (*4) for pre-flare and post-peak flare, inbound and outbound

- Comparison of modeled ion densities and observations:
 - Image: Modeled O₂⁺ densities ~40% higher than LPW e- density, reasonable agreement
 - Modeled CO_2^+ densities ~4x NGIMS n(CO_2^+)
 - The relative enhancement are similar, comparing MAVEN and model results
 - Image: Similar scale heights from MAVEN and model

- Relative density enhancement to the pre-flare period from modeling:
 - Peak-flare/pre-peak
 - atmosphere profiles kept the same
 - N(O₂⁺): ~15% increase for M2 layer and up to ~300% for M1 layer; ~sqrt(prod. rate)
 - N(CO₂⁺): ~35% increase for M2 layer and up to ~1500% for M1 layer; ~prod. Rate
 - Post-peak flare/pre-peak
 - thermosphere expansion modulates ion enhancements
 - N(O₂⁺): <50% enhancement
 - N(CO₂⁺): <50% enhancement above 140 km; <u>decrease</u> below 140 km due to enhanced O density (loss rate)

Summary

- Modeling low-altitude ionospheric response to X8.2 flare with STET
- Found a good agreement between modeled (STET) and measured (SWEA) photoelectron spectra, meaning small errors in modeled EUV/X-ray spectra
- First clear and repeated identification of the carbon Auger peak in the Martian ionosphere
- Comparing pre-flare and flare peak, for the same atmosphere profiles, the modeled O₂⁺ and CO₂⁺ densities are increased by 15% and 35% above the M2 peak and up to 300% and 1500% at 100 km, respectively
- Comparing pre-flare and post-peak flare period, O₂⁺ and CO₂⁺ density enhancement < 50%, consistent with MAVEN observations, due to a combination of increased EUV fluxes and also neutral atmosphere expansion
 - A higher O density during the flare actually results in decreases in CO_2^+ density below 140 km

MAVEN Instruments

EUVM:

- 0-7 nm, 17-22 nm, 121-122 nm, 3 bands
- Drive an irradiance model

Neutral densities (O, CO2) Ion density (CO2+)

• Main inputs to STET:

- O and CO₂ density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM (Mars-Global Ionosphere Thermosphere Model)
- Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from MGITM

- Only TWO Neutral and thermal plasma available:
 - Pre-flare and peakflare (the same): preflare MAVEN measurements and MGITM results
 - Post-peak flare: postpeak MAVEN measurements and MGITM results

- Relative enhancement in total production (photoi + EII):
 - Peak flare/pre-flare: increased 40% above 130 km and up to 1500% down below 130 km (same atmosphere)
 - Post-peak flare/pre-flare: < 200% due to enhanced solar irradiance and expanded thermosphere

Data-Model Comparison of Photoelectron Spectra

- Quantitative comparison:
 - (b) Within 30% for < 60 eV and 200-500 eV, roughly corresponding to EUV & X-ray ~17-60 nm, 1-6 nm

- Production rates for CO_2^+ :
 - PHI (photoionization): dashed lines
 - peaks ~125 km from pre-flare and peak-flare, as the two using the same background profiles
 - peaks ~135 km for post-peak, due to expanded thermosphere
 - Ell (electron impact ionization): solid lines
 - peaks deeper, from pre-peak, post-peak flare to peak-flare, as the soft X-ray spectrum becomes harder
- Relative enhancement in total production (PHI + EII):
 - Peak flare/pre-flare: increased 40% above 130 km and up to 1500% down below 130 km (same atmosphere)
 - Post-peak flare/pre-flare: < 200% due to enhanced solar irradiance and expanded thermosphere

- The M2 layer peaks ~ 125 km for O2+ and ~140—150 km for CO2+
- A shoulder from the M1 layer is seen in O2+ profile for the post-peak flare period, but not for the pre-flare and peak-flare periods
 - Whether M1 and M2 peaks are well separated depends on solar spectral shapes and neutral density profiles

