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Introduction & Motivation
• Main source of dayside ionosphere at Mars:

• Solar EUV (10-100 nm), creating M2 layer
• X-ray (< 10 nm), creating M1 layer

• Dayside ion production mainly comes from two processes:
I. Initial photoionization from photons, creating ions and photoelectrons
II. Electron impact ionization (EII) by photoelectrons

• Solar EUV and X-ray irradiance vary orders of magnitude during a flare, 
causing variations in ionosphere/thermosphere

• September 10, 2017, MAVEN encountered the largest flare (X8.2) to date
• Characterizing ionosphere variation



Methodology

• Characterizing low-altitude ionospheric response to this flare with 
SuperThermal Electron Transport (STET) model:

• Modeling photoelectron flux variations
• Calculating photoionization rate and EII rate for ion production
• Assuming photochemical equilibrium (PCE, <200 km): obtain O2

+ and CO2
+ densities

• STET solves superthermal electron flux 𝝍𝝍 in time (t), spatial distance along a
single magnetic field (s), electron energy (E), and pitch angle 𝝁𝝁:



Methodology

• Overview of the flare event
• Three periods are selected: pre-flare, peak-flare, post-peak flare

Fang+ (2018)
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before flare
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After flare peak

Flare Peak



Methodology
• EUV inputs to STET:

• EUV spectra from a spectral model [Thiemann et al., 2018], similar to FISM



Methodology
• Main inputs to STET:

• O and CO2 density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM 
(Mars-Global Ionosphere Thermosphere Model) for below and above MAVEN periapsis, 
respectively

• Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from 
MGITM

MAVEN

MGITM based

• Only TWO Neutral and thermal plasma available:
• Pre-flare and peak-flare: pre-flare profiles
• Post-peak flare: post-peak profiles



Data-Model Comparison of Photoelectron Spectra 

• Thick black and blue energy spectra from 
SWEA (Solar Wind Electron Analyzer)
observations 

• Thin black, blue, and red energy spectra 
from STET modeling

• Typical ionospheric photoelectron spectral 
features: He-II peak, knee, O Auger peak

• Mostly in good agreement
• Within 30% for < 60 eV and 200-500 eV
• Modeled solar irradiance spectra are very 

accurate for EUV & X-ray ~17-60 nm, 1-6 nm, 
correspondingly



Data-Model Comparison of Photoelectron Spectra 

• Auger electrons
• Soft X-ray ionizing inner-shell electrons of C, O, N
• Resultant ions deexciting through emitting Auger 

electrons 
• At fixed energies: C~250 eV, N~360 eV, O~500 eV

• C Auger electron peak in both modeled and 
observed photoelectron spectra

• Being consistently observed over 4 min during 
this flare event

Carbon
Auger e-



A Clearer Example of Carbon 
Auger Electrons From SWEA

This provides a clear and unambiguous 
identification of the carbon Auger peak in the 
electron energy spectra in the Martian ionosphere 
for the first time.



Observations and Modeling of Plasma Densities 
• Ion Densities calculated assuming photochemical equilibrium:

Schunk and Nagy [2009]

[STET]

• From R1-R6, we can obtain:

(R2, R3, R4, R6)

(R1, R2, R3, R5)

CO2
+ + O ----> O2

+ + CO
Source for O2+
Loss for CO2+, depending on n(O)



Observations and Modeling of Plasma Densities 
• From model:

• Solid lines: CO2+ and O2+ densities for 3 periods

• From observations: 
• LPW e- density (*1.4) and NGIMS CO2+ density 

(*4) for pre-flare and post-peak flare, inbound 
and outbound

NGIMS n(CO2+)
In+out bound

LPW ne
In+out bound



Observations and Modeling of Plasma Densities 
• Comparison of modeled ion densities and 

observations:
• ☞Modeled O2

+ densities ~40% higher than 
LPW e- density, reasonable agreement

• Modeled CO2
+ densities ~4x NGIMS n(CO2

+ )
• ☞ The relative enhancement are similar, 

comparing MAVEN and model results
• ☞ Similar scale heights from MAVEN and model



Observations and Modeling of Plasma Densities 
• Relative density enhancement to the pre-flare 

period from modeling:
• Peak-flare/pre-peak

• atmosphere profiles kept the same
• N(O2

+): ~15% increase for M2 layer and up to ~300% 
for M1 layer; ~sqrt(prod. rate)

• N(CO2
+): ~35% increase for M2 layer and up to 

~1500% for M1 layer; ~prod. Rate
• Post-peak flare/pre-peak

• thermosphere expansion modulates ion 
enhancements

• N(O2
+): <50% enhancement

• N(CO2
+): <50% enhancement above 140 km; 

decrease below 140 km due to enhanced O density 
(loss rate)

CO2
+

O2
+O2

+

CO2
+



Summary
• Modeling low-altitude ionospheric response to X8.2 flare with STET
• Found a good agreement between modeled (STET) and measured (SWEA) 

photoelectron spectra, meaning small errors in modeled EUV/X-ray spectra
• First clear and repeated identification of the carbon Auger peak in the Martian 

ionosphere
• Comparing pre-flare and flare peak, for the same atmosphere profiles, the modeled 

O2
+ and CO2

+ densities are increased by 15% and 35% above the M2 peak and up to 
300% and 1500% at 100 km, respectively

• Comparing pre-flare and post-peak flare period, O2
+ and CO2

+ density enhancement < 
50%, consistent with MAVEN observations, due to a combination of increased EUV 
fluxes and also neutral atmosphere expansion 

• A higher O density during the flare actually results in decreases in CO2
+ density below 140 km



MAVEN Instruments

Ne, Te

Suprathermal e-
(photoelectron)
measurements

Neutral densities 
(O, CO2)
Ion density
(CO2+)

EUVM: 
• 0-7 nm, 17-22 nm, 121-

122 nm, 3 bands
• Drive an irradiance model



Methodology
• Main inputs to STET:

• O and CO2 density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM (Mars-Global 
Ionosphere Thermosphere Model)

• Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from MGITM

MAVEN

MGITM based

• Only TWO Neutral and
thermal plasma
available:
• Pre-flare and peak-

flare (the same): pre-
flare MAVEN
measurements and
MGITM results

• Post-peak flare: post-
peak MAVEN
measurements and
MGITM results



Observations and Modeling of Plasma Densities 

• Relative enhancement in total production 
(photoi + EII):

• Peak flare/pre-flare: increased 40% above 130 
km and up to 1500% down below 130 km 
(same atmosphere)

• Post-peak flare/pre-flare: < 200% due to 
enhanced solar irradiance and expanded 
thermosphere



Data-Model Comparison of Photoelectron Spectra 

• Quantitative comparison:
• (b) Within 30% for < 60 eV and 200-500 

eV, roughly corresponding to EUV & X-ray 
~17-60 nm, 1-6 nm

STET/SWEA (pre-flare)
STET/SWEA (post-peak flare)



Observations and Modeling of Plasma Densities 
• Production rates for CO2

+ :
• PHI (photoionization): dashed lines

• peaks ~125 km from pre-flare and peak-flare, as the 
two using the same background profiles

• peaks ~135 km for post-peak, due to expanded 
thermosphere

• EII (electron impact ionization): solid lines
• peaks deeper, from pre-peak, post-peak flare to

peak-flare, as the soft X-ray spectrum becomes 
harder

• Relative enhancement in total production 
(PHI + EII):

• Peak flare/pre-flare: increased 40% above 130 km 
and up to 1500% down below 130 km (same 
atmosphere)

• Post-peak flare/pre-flare: < 200% due to 
enhanced solar irradiance and expanded 
thermosphere



Observations and Modeling of Plasma Densities 
• The M2 layer peaks ~ 125 km for O2+ and 

~140—150 km for CO2+

• A shoulder from the M1 layer is seen in O2+ 
profile for the post-peak flare period, but 
not for the pre-flare and peak-flare periods

• Whether M1 and M2 peaks are well separated 
depends on solar spectral shapes and neutral 
density profiles
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