Observations and Modeling of Low-Altitude Ionospheric Responses to the 2017 September X8.2 Solar Flare at Mars

Shaosui Xu1, Ed Thiemann2, David Mitchell1, Frank Eparvier2, David Pawlowski3, Mehdi Benna4, Laila Andersson2, Michael W. Liemohn5, Stephen Bougher5, Tom Woods2, Phil Chamberlin2, Sonal Jain2, Christian Mazelle6

1Space Sciences Laboratory, University of California, Berkeley, USA
2Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
3Physics Department, Eastern Michigan University, Ypsilanti, Michigan, USA
4NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
5Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
6IRAP, CNRS - University of Toulouse - UPS - CNES, Toulouse, France
Introductions & Motivation

• Main source of dayside ionosphere at Mars:
 • Solar EUV (10-100 nm), creating M2 layer
 • X-ray (< 10 nm), creating M1 layer

• Dayside ion production mainly comes from two processes:
 I. Initial photoionization from photons, creating ions and photoelectrons
 II. Electron impact ionization (EII) by photoelectrons

• Solar EUV and X-ray irradiance vary orders of magnitude during a flare, causing variations in ionosphere/thermosphere
 • September 10, 2017, MAVEN encountered the largest flare (X8.2) to date
 • Characterizing ionosphere variation
Methodology

• Characterizing low-altitude ionospheric response to this flare with SuperThermal Electron Transport (STET) model:
 • Modeling photoelectron flux variations
 • Calculating photoionization rate and EII rate for ion production
 • Assuming photochemical equilibrium (PCE, <200 km): obtain O_2^+ and CO_2^+ densities

• STET solves superthermal electron flux ψ in time (t), spatial distance along a single magnetic field (s), electron energy (E), and pitch angle μ:

$$\frac{\beta E}{\sqrt{E}} \frac{\partial \psi}{\partial t} + \mu \frac{\partial \psi}{\partial s} - \frac{1 - \mu^2}{2} \left(-\frac{F}{E} + \frac{1}{B} \frac{\partial B}{\partial s} \right) \frac{\partial \psi}{\partial \mu} + EF \mu \frac{\partial}{\partial E} \left(\frac{\psi}{E} \right) = Q + S_{ee} + \sum_{\alpha} (S_{e\alpha} + S_{e\alpha}^* + S_{e\alpha}^+) + \sum_i (S_{el} + S_{el}^* + S_{el}^-)$$
Methodology

- Overview of the flare event
- Three periods are selected: pre-flare, peak-flare, post-peak flare

Fang+ (2018)
Methodology

• EUV inputs to STET:
 • EUV spectra from a spectral model [Thiemann et al., 2018], similar to FISM
Methodology

• Main inputs to STET:
 • O and CO$_2$ density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM (Mars-Global Ionosphere Thermosphere Model) for below and above MAVEN periapsis, respectively
 • Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from MGITM

• Only TWO Neutral and thermal plasma available:
 • Pre-flare and peak-flare: pre-flare profiles
 • Post-peak flare: post-peak profiles
Data-Model Comparison of Photoelectron Spectra

- **Thick** black and **blue** energy spectra from SWEA (Solar Wind Electron Analyzer) observations
- Thin black, **blue**, and **red** energy spectra from STET modeling
- Typical ionospheric photoelectron spectral features: He-\(\text{II}\) peak, knee, O Auger peak
- Mostly in good agreement
 - Within 30% for < 60 eV and 200-500 eV
 - Modeled solar irradiance spectra are very accurate for EUV & X-ray \(\sim 17-60\) nm, 1-6 nm, correspondingly
Data-Model Comparison of Photoelectron Spectra

• Auger electrons
 • Soft X-ray ionizing inner-shell electrons of C, O, N
 • Resultant ions deexciting through emitting Auger electrons
 • At fixed energies: C~250 eV, N~360 eV, O~500 eV

• C Auger electron peak in both modeled and observed photoelectron spectra
 • Being consistently observed over 4 min during this flare event
A Clearer Example of Carbon Auger Electrons From SWEA

This provides a clear and unambiguous identification of the carbon Auger peak in the electron energy spectra in the Martian ionosphere for the first time.
Observations and Modeling of Plasma Densities

• Ion Densities calculated assuming photochemical equilibrium:

\[\begin{align*}
R1: & \quad \text{CO}_2 + h\nu \rightarrow \text{CO}_2^+ + e \quad \text{[STET]} \\
R2: & \quad \text{CO}_2^+ + \text{O} \rightarrow \text{CO} + \text{O}_2^+; \quad k_2 = 1.64 \times 10^{-10} \\
R3: & \quad \text{CO}_2^+ + \text{O} \rightarrow \text{CO}_2 + \text{O}^+; \quad k_3 = 9.6 \times 10^{-11} \\
R4: & \quad \text{O}^+ + \text{CO}_2 \rightarrow \text{O}_2^+ + \text{CO}; \quad k_4 = 1.1 \times 10^{-9} \\
R5: & \quad \text{CO}_2^+ + e \rightarrow \text{CO} + \text{O}; \quad k_5 = 4.2 \times 10^{-7} \left(\text{300/Te}\right)^{0.75} \\
R6: & \quad \text{O}_2^+ + e \rightarrow \text{O} + \text{O}; \quad k_6 = 2.4 \times 10^{-7} \left(\text{300/Te}\right)^{0.7} \\
\end{align*} \]

\[\begin{align*}
\text{CO}_2^+ + \text{O} \rightarrow \text{O}_2^+ + \text{CO} \\
\text{Source for } \text{O}_2^+ \\
\text{Loss for CO}_2^+, \text{ depending on } n(\text{O}) \\
\end{align*} \]

\[\text{Schunk and Nagy [2009]} \]

• From R1-R6, we can obtain:

\[n(\text{O}_2^+) = \sqrt{\frac{(k_2 + k_3)n(\text{CO}_2^+)n(\text{O})}{k_6}} \quad (\text{R2, R3, R4, R6}) \]

\[n(\text{CO}_2^+) = \frac{P(\text{CO}_2^+)}{(k_2 + k_3)n(\text{O}) + k_5n(\text{O}_2^+)} \quad (\text{R1, R2, R3, R5}) \]
Observations and Modeling of Plasma Densities

- From model:
 - Solid lines: CO2+ and O2+ densities for 3 periods

- From observations:
 - LPW e- density (*1.4) and NGIMS CO2+ density (*4) for pre-flare and post-peak flare, inbound and outbound
Observations and Modeling of Plasma Densities

- Comparison of modeled ion densities and observations:
 - Modeled O_2^+ densities ~40% higher than LPW e- density, reasonable agreement
 - Modeled CO_2^+ densities ~4x NGIMS $n(CO_2^+)$
 - The relative enhancement are similar, comparing MAVEN and model results
 - Similar scale heights from MAVEN and model
Observations and Modeling of Plasma Densities

- Relative density enhancement to the pre-flare period from modeling:
 - **Peak-flare/pre-peak**
 - atmosphere profiles kept the same
 - $N(O_2^+)$: ~15% increase for M2 layer and up to ~300% for M1 layer; ~$\sqrt{\text{prod. rate}}$
 - $N(CO_2^+)$: ~35% increase for M2 layer and up to ~1500% for M1 layer; ~prod. Rate
 - **Post-peak flare/pre-peak**
 - thermosphere expansion modulates ion enhancements
 - $N(O_2^+)$: <50% enhancement
 - $N(CO_2^+)$: <50% enhancement above 140 km; *decrease* below 140 km due to enhanced O density (loss rate)
Summary

• Modeling low-altitude ionospheric response to X8.2 flare with STET

• Found a good agreement between modeled (STET) and measured (SWEA) photoelectron spectra, meaning small errors in modeled EUV/X-ray spectra

• First clear and repeated identification of the carbon Auger peak in the Martian ionosphere

• Comparing pre-flare and **flare peak**, for the same atmosphere profiles, the modeled O_2^+ and CO_2^+ densities are increased by 15% and 35% above the M2 peak and up to 300% and 1500% at 100 km, respectively

• Comparing pre-flare and **post-peak flare period**, O_2^+ and CO_2^+ density enhancement < 50%, consistent with MAVEN observations, due to a combination of increased EUV fluxes and also neutral atmosphere expansion
 • A higher O density during the flare actually results in decreases in CO_2^+ density below 140 km
MAVEN Instruments

Suprathermal e- (photoelectron) measurements

Ne, Te

Solar Inputs
- LPW
- SEP
- SWIA
- SWEA
- MAG

EUVM:
- 0-7 nm, 17-22 nm, 121-122 nm, 3 bands
- Drive an irradiance model

Plasma Processes
- LPW
- SWIA
- STATIC
- SWEA
- MAG
- IUVS

Neutral Processes
- Neutral densities (O, CO2)
- Ion density (CO2+)

Neutral Processes
- NGIMS
- IUVS
Methodology

• Main inputs to STET:
 • O and CO₂ density from NGIMS (Neutral Gas and Ion Mass Spectrometer) & MGITM (Mars-Global Ionosphere Thermosphere Model)
 • Te from LPW (Langmuir Probe and Waves), extrapolated to neutral Tn at 115 km from MGITM

• Only TWO Neutral and thermal plasma available:
 • Pre-flare and peak-flare (the same): pre-flare MAVEN measurements and MGITM results
 • Post-peak flare: post-peak MAVEN measurements and MGITM results
Observations and Modeling of Plasma Densities

- Relative enhancement in total production (photoi + EII):
 - Peak flare/pre-flare: increased 40% above 130 km and up to 1500% down below 130 km (same atmosphere)
 - Post-peak flare/pre-flare: < 200% due to enhanced solar irradiance and expanded thermosphere
Data-Model Comparison of Photoelectron Spectra

(b) Quantitative comparison:
- Within 30% for < 60 eV and 200-500 eV, roughly corresponding to EUV & X-ray ~17-60 nm, 1-6 nm
Observations and Modeling of Plasma Densities

- Production rates for CO_2^+:
 - PHI (photoionization): dashed lines
 - peaks \sim125 km from pre-flare and peak-flare, as the two using the same background profiles
 - peaks \sim135 km for post-peak, due to expanded thermosphere
 - EII (electron impact ionization): solid lines
 - peaks deeper, from pre-peak, post-peak flare to peak-flare, as the soft X-ray spectrum becomes harder

- Relative enhancement in total production (PHI + EII):
 - Peak flare/pre-flare: increased 40% above 130 km and up to 1500% down below 130 km (same atmosphere)
 - Post-peak flare/pre-flare: < 200% due to enhanced solar irradiance and expanded thermosphere
Observations and Modeling of Plasma Densities

• The M2 layer peaks ~ 125 km for O2+ and ~140—150 km for CO2+

• A shoulder from the M1 layer is seen in O2+ profile for the post-peak flare period, but not for the pre-flare and peak-flare periods
 • Whether M1 and M2 peaks are well separated depends on solar spectral shapes and neutral density profiles