MAVEN OBSERVATIONS OF SOLAR WIND DRIVEN MAGNETOSONIC WAVES HEATING THE DAYSIDE MARTIAN IONOSPHERE

CHRISTOPHER FOWLER, 52^{ND} ESLAB SYMPOSIUM, $14^{\text{TH}} - 18^{\text{TH}}$ MAY, 2018.

Vignes et al., 2000.

INTRODUCTION

- Important energy sources for planetary atmospheres:
 - Solar radiation.
 - Solar wind (~10⁶ times less energy than SR).
- Waves generated at ~proton gyro-length scale at planetary bow shock.
- Does the small scale size of the induced Martian magnetosphere allow for "direct" energy transfer from the solar wind to the ionosphere?

Solar wind proton gyro radius typically ~1500 km (0.5 R_{mars}).

MAVEN ORBIT TRAJECTORY

Empirical bow shock and magnetic
pileup boundaries (Vignes et al., 2000).

 MAVEN inbound segment passes through inner magnetosheath and into the ~sub-solar ionosphere.

 The following figures show ~15 minutes of plasma data (spanning the purple line here).

MAVEN OBSERVATIONS: (1): MAGNETOSONIC (MS) WAVES

20-25 nT waves in
 parallel B, at ~0.035
 Hz.

B aligned in ~Z MSO direction.

Region 2: wave amplitudes increase as density increases.

Wavelengths are 100's of km (large).

(2A): ION HEATING

~245 km altitude Region 3 (Q_2^{+})

- Significant wave damping and ion heating observed in Region 3.
- O₂⁺ is dominant ion in Region 3.

 T_i of ~5 eV observed.

Region 1 (H⁺) Region 2 (O⁺)

(2B): ION HEATING

• Wave damping occurs primarily in Region 3 $(O_2^+ dominated)$ ionosphere).

 N_i

 $[cm^{-3}]$

Ion

9 T

 $E_f \propto V_A < dB^2 >$

Region 1	80	$\frac{2}{3}H^+, \frac{1}{3}O^+$	2x10 ⁴	8x10 ⁻¹⁹	60	10	60	6	1x10 ⁻⁰	503 - 383
Region 2a	10^{2}	O^+	$2x10^{4}$	$3x10^{-18}$	50	14	27	4	1×10^{-6}	382
Region 2b / Region 3a	10^{3}	O^+	4000	$3x10^{-17}$	50	25	9	2	1x10 ⁻⁶	282
Region 3b	10^{4}	O_2^+	1350	$3x10^{-16}$	80	5	4	1	2x10 ⁻⁸	224 6

(2C): ION HEATING

- Ion heating rates:
 - 0.03 to 0.2 eV s⁻¹ per ion.
 - Escape energy in ~10 70 s!
- Why does this heating occur?
 - Adiabatic vs non adiabatic motion:
 - O⁺ gyro period just above wave frequency.
 - O₂⁺ gyro period just below wave frequency.
 - Leads to ion energization perpendicular to local **B** (observed by STATIC).
 - Heating efficiency likely a function of: ion composition, mass, density, **|B|**, wave frequency.

ARE THESE WAVES AND HEATING IMPORTANT AT MARS?

• Upper ionosphere > 250 km is severely depleted during this and similar events.

 Electron temperature enhanced during this event (suggests ionospheric heating).

CONCLUSIONS

- Effects of magnetosonic wave fronts "crashing" into the Martian ionosphere:
 - Plasma density and temperature variations of ~20-100% in amplitude.
 - Whistler waves generated at compressional wave fronts.

- Wave damping in dense, O₂⁺ dominated ionosphere leads to significant ion heating.
- Observed event severely erodes the dayside ionosphere.
 - Implications for long term evolution of Martian climate, and those at other unmagnetized bodies.

<u>This study:</u> Fowler et al., 2018, MAVEN observations of magnetosonic waves heating the dayside Martian ionosphere, JGR Space Physics.

Accompanying manuscript in preparation: Collinson et al., 2018, Ringing the ionosphere of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultra-low frequency magnetosonic waves generated upstream of Mars, JGR Space Physics.

BACKUP SLIDES

WAVE DISPERSION RELATION FOR MS WAVE:

 $\omega^{2} = K^{2} \frac{V_{\rm S}^{2} + V_{\rm A}^{2}}{1 + \frac{V_{\rm A}^{2}}{2}}$

 $V_{\rm S}$ is defined as $\sqrt{\frac{\gamma k_{\rm b} T_{\rm e}}{m_{\rm i}}}$; $V_{\rm A}$ as $\sqrt{\frac{B}{\mu_0 \rho}}$

 $\sum_i n_{
m i} m_{
m i}$

ENERGY DENSITY OF A MS WAVE:

- Energy density (Ed) == pressure.
- $Ed = \langle (BO + B1.cos(wt))^2 \rangle / 2u BO^2/2u$
 - $BO^2 + 2B1B0.cos(wt) + B1^2.cos^2(wt) BO^2$

12

• → Ed ~ B1² / 4u

(2A): IONOSPHERIC DENSITY VARIATIONS

 Variations in Ne show no obvious correlation with MS waves.

- Variations in Te show correlation with MS waves.
- Light ion (⊢) density variations correlate with MS waves.

 Heavier ions (O⁺,
 O₂⁺) do not correlate well with MS waves.

(2B): IONOSPHERIC DENSITY VARIATIONS

• When protons dominate the ion composition (higher altitudes):

- H⁺ gyro period ~ 15 x 0.035 Hz => Protons expected to respond to changes in **B**, as observed.
- Suprathermal electron densities also correlate with **B** (see next slide).
- When heavier ions dominate the ion composition (lower altitudes):
 - Gyro periods are very close to 0.035 Hz => ions not expected to respond to changes in B.
 - To maintain charge neutrality, ionospheric electron density also follows ion density variations.

(3A): WHISTLER WAVE GENERATION

- Suprathermal temperature anisotropy observed coincident with MS wave peaks.
- Whistler waves also
 observed
 coincident with MS
 wave peaks.
- Suprathermal electrons become less field aligned during times of B compression.

(3B): WHISTLER WAVE GENERATION

- Electron gyro frequency >> 0.035 Hz.
 - During magnetic compression, electron PAD becomes less field aligned to conserve magnetic invariant.
 - Change in PAD leads to temperature anisotropy perpendicular to local **B**.
 - Population is then unstable to generation of Whistler noise (e.g. Kennel and Petschek, 1966).
- Exact Whistler generation mechanism unclear electrons >~ 1 KeV should generate the observed Whistlers; these make up < 0.1% of the population density though (slow growth rate).

WHISTLERS (BACKUP)

17

(4A): ION HEATING - ION VELOCITY DISTRIBUTIONS

- Obtain estimates of T_iby fitting to ridge of conic distribution.
- Conics show energization perpendicular to local **B**.