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Vignes et al., 2000.

INTRODUCTION

 Important energy sources for planetary
atmospheres: | __MGS (Direct fit

e Solar radiation. — — MGS (with Slavin’s method)

e Solar wind (~10° times less energy than SR).

e Waves generated at ~proton gyro-length scale at
planetary bow shock.

Solar wind proton gyro
radius typically ~1500
km (0.5 R

mars)‘



MAVEN ORBIT TRAJECTORY

e Empirical bow shock and magnetic
pileup boundaries (Vignes et al., 2000).

e MAVEN inbound segment passes
through inner magnetosheath and into
the ~sub-solar ionosphere.

 The following figures show ~15
minutes of plasma data (spanning the
purple line here).
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MAVEN OBSERVATIONS: (1): MAGNETOSONIC (MS) WAVES
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Heated ions close to periapsis

Periapsis

20-25 nT waves in
parallel B, at ~0.035
Hz.

B aligned in ~“Z MSO
direction.

Region 2: wave
amplitudes increase as
density increases.

Wavelengths are 100’s
of km (large).
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(2B): ION HEATING Region1  Region2  Region 3
[ ! :
oy

e Wave damping occurs primarily in e b e ——

Region 3 (O," dominated SRR (R L L S R U e Cee LN

ionosphere). :
i Alfven velocity is Wave damping
occurs in Region 3.

E. « V,<dB2> ~ group velocity
A

Ion
composition

Region 2b /
Region 3a




Region 1 (H*) Region 2 (O*) Region 3(0,")

(2C): ION HEATING

e Why does this heating occur?

e Adiabatic vs non adiabatic motion:

e O* gyro period just above wave frequency.
e O,*gyro period just below wave frequency.

e Leads to ion energization perpendicular to local B (observed by STATIC).

e Heating efficiency likely a function of: ion composition, mass, density, |B|, wave
frequency.



ARE THESE WAVES AND HEATING IMPORTANT AT MARS?

e Upper ionosphere > 250 km is severely e Electron temperature enhanced

depleted during this and similar events. during this event (suggests
ionospheric heating).

Electron density profiles Electron temperature profiles
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CONCLUSIONS

e Effects of magnetosonic wave fronts “crashing”
into the Martian ionosphere:

e Plasma density and temperature variations of
~20-100% in amplitude.

e Whistler waves generated at compressional
wave fronts.

* Wave damping in dense, O,* dominated ionosphere leads to significant ion heating.

 Observed event severely erodes the dayside ionosphere.
e Implications for long term evolution of Martian climate, and those at other unmagnetized
bodies.
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WAVE DISPERSION RELATION FOR MS WAVE:




ENERGY DENSITY OF A MS WAVE:

* Energy density (Ed) == pressure.
e Ed=<(BO+ Bl.cos(wt))?>/2u —B0?/2u
e BO0?+ 2B1B0.cos(wt) + B12%.cos?(wt) — BO?

e =» Ed~B1%/4u
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(2A): IONOSPHERIC DENSITY VARIATIONS

Variations in Ne
show no obvious
correlation with
MS waves.

|

Variations in Te
show correlation
with MS waves.

SN Lightion ( )

P

density variations
correlate with MS
waves.

[eV]

Heavier ions ( ,

) do not
correlate well with
MS waves.
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(2B): IONOSPHERIC DENSITY VARIATIONS

e When protons dominate the ion composition (higher altitudes):

e H* gyro period ~ 15 x 0.035 Hz => Protons expected to respond to changes in B, as observed.
e Suprathermal electron densities also correlate with B (see next slide).

e When heavier ions dominate the
ion composition (lower altitudes):

e Gyro periods are very close to
0.035 Hz => ions not expected
to respond to changes in B.

 To maintain charge neutrality,
ionospheric electron density

0.0001

also follows ion density xmso 11
variations. AR k] 7152

SZA 26.3
hhmm 0548
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(3A): WHISTLER WAVE GENERATION
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e Suprathermal

temperature
anisotropy
observed
coincident with MS
wave peaks.

Whistler waves also
observed
coincident with MS
wave peaks.

Suprathermal
electrons become
less field aligned
during times of B
compression.

15



(3B): WHISTLER WAVE GENERATION

e Electron gyro frequency >> 0.035 Hz.
* During magnetic compression, electron
3 : 2015-04—01§05:54:38 => 05:54:41 2015-04—-01/05:5446 => 05:54:49
PAD becomes less field aligned to conserve 10° 10°
magnetic invariant.

 Change in PAD leads to temperature
anisotropy perpendicular to local B.

ter eV)]

e Population is then unstable to generation
of Whistler noise (e.g. Kennel and
Petschek, 1966).
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e Exact Whistler generation mechanism unclear —
electrons >~ 1 KeV should generate the
observed Whistlers; these make up < 0.1% of
the population density though (slow growth
rate).

100 1000 100 1000
Energy [eV] Energy [eV]




WHISTLERS (BACKUP)

(A) Uncompressed, (B) Compressed, (C) Uncompressed,
weaker B stronger B weaker B

Direction of
Magnetosheath wave front
electrons with propagation
larger pitch angles: \
Field aligned, __-=""anisotropic
magnetosheath -~ distribution
electrons generates Whistler
noise.

\
Draped magnetic field




(4A): ION HEATING — ION VELOCITY DISTRIBUTIONS

A | * Obtain estimates of T/by
: fitting to ridge of conic
distribution.

e Conics show energization
perpendicular to local B.
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