

Small scale excess electron densities in the lower ionosphere of Mars:

Interpretation of Mars Express radio science observations in combination with MAVEN measurements

52th ESLAB symposium 2018, ESTEC, Netherlands

K. Peter¹, M. Pätzold¹, F. González-Galindo², L. Andersson³, M. K. Bird^{1,4}, M. Crismani³, C. M. Fowler³, B. Häusler⁵, D. Larson⁶, R. Lillis⁶, G. Molina-Cuberos⁷, N. Schneider³, S. Tellmann¹, O. Witasse⁸

¹ RIU Cologne, Cologne, Germany
 ² Instituto de Astrofísica de Andalucía, CSIC, Spain
 ³ LASP, University of Colorado at Boulder, USA
 ⁴ Argelander Institut für Astronomie, Bonn, Germany
 ⁵ Univ. der Bundeswehr München, Germany
 ⁶ SSL, Univ. of California, Berkeley, USA
 ⁷ Universidad de Murcia, Murcia Spain
 ⁸ ESA, ESTEC, The Netherlands

MaRS radio science

MEX-MaRS: excess electron density

MEX-MaRS: excess electron density

MEX-MaRS: excess electron density

Mm: Solar zenith angle dependence

Mm: crustal magnetic field

MaRS undisturbed O

MaRS Mm

Isomagnetic contours of the radial field component at ±10, 20, 50, 200 nT

Brad in 400 km altitude from MGS MAG/ER observations, Connerney et al. 2001

Mm: crustal magnetic field

MaRS undisturbed

MaRS Mm

Isomagnetic contours of the radial field component at ±10, 20, 50, 200 nT

MaRS data inconclusive concerning Mm occurrence rate dependence on high crustal magnetic fields

Mm layers are available above regions with low crustal magnetic field

- The averaged ionospheric base with Mm observations is found at lower altitudes than the undisturbed ionospheric base.
- Strong correlation between Mm occurrence rate and SIP solar activity (not shown)
- Neither the full profile TEC, nor the M1 TEC is significantly affected by the physical processes causing Mm (not shown).
 - Possible Mm origins are SEPs or short solar X-ray flux.

Mm: meteoric material

Mm: meteoric material

 The MAVEN IUVS detects Mg⁺ densities lower than 1°10⁹ m^{-3.} Crismani et al., Nature Geoscience 2017

This is lower than the lowest detected Mm maximum electron density.

IonA-2

Туре	1D time-stepping photochemical model with diurnal cycle
Input neutral atmosphere	Mars Climate Database V5.2, 24h variable neutral temperature and atmosphere CO ₂ , N ₂ , O, O ₂ , O ₃ , H ₂ O, H, H ₂ , Ar, CO
Input electron temperatue	Electron temperature from <i>Rohrbough et al., (1979)</i> derived from Viking lander in-situ observations
Solar radiation	Solar2000 V2.38, <i>Tobiska et al. (2000)</i>
Solar flux cross sections	Huebner and Mukherjee (2015), except for O ₃ (Sander et al., 2011) and CO ₂ and N ₂ (individual calculation from several sources)
Secondary ionization	W-value approach, Wedlund et al. (2011)
Reaction scheme	Gonzalez-Galindo et al. (2013), Fox and Sung (2001), Fox (2012), Fox (2015)
Neutral transport	Minor molecular diffusion C, H ₂ O ₂ , HO ₂ , O(¹ D), N(² D), N, NO, NO ₂ , OH
Ion transport	Ambipolar diffusion (neutral-ion, ion-ion, ion-el. collisions) Ar ⁺ , CO ₂ ⁺ , CO ⁺ , C ⁺ , HCO ₂ ⁺ , HCO ⁺ , H ⁺ , N ₂ ⁺ , NO ⁺ , N ⁺ , O ₂ ⁺ , O ⁺

Mm: Local ions O_2^+ & NO⁺

<u>DoY 336, 2005</u> χ = 78.78°

NO density between 65 and 100 km determines the ratio between NO⁺ and O₂⁺.

The model results reproduce the observed V-shaped Mm feature without artifical X-ray enhancement.

Comparison of MaRS OCC 2014 - 2017 with MVN-EUV av. model fluxes < 1nm

Comparison of MaRS OCC 2014 - 2017 with MVN-EUV av. model fluxes < 1nm

More MaRS observations are needed for the further investigation of the role of short solar X-ray in the formation process of the Mm.

Conclusions

- Implications from the MaRS observations
 - The Mm occurrences are less sporadic than expected.
 - The observed MAVEN IUVS Mg⁺ density is too small to be the only responsible ion species for the identified Mm.
 - Wind shear is an unlikely process for the formation of the observed Mm.
 - Short solar X-ray (<1.5 nm) or SEPs are the most probable energy source for the ionization in the Mm altitude range between 70 and 110 km.

Conclusions

- Implications from the IonA-2 model
 - The ionization of ambient atmospheric ions (O_2^+, NO^+) by short solar X-ray provides an excellent agreement with the V-shaped Mm.

- The model Mm vertical TEC, peak electron densities and altitudes are in excellent agreement with the observed Mm characteristics.
- The sporadic occurrence of the Mm is explained by a combination of observational (e.g. noise level) and environmental (e.g. variable solar flux) parameters.
- Additional sources might provide additional electron density (Mg⁺), additional substructures (gravity waves) or strong Mm enhancements with large ionospheric disturbances (SEP events).
- Implications from first comparisons with MAVEN-EUV model data
 - More MaRS observations are needed for the further investigation of the role of short solar X-ray in the formation process of the merged excess electron densities.

Backup slides

MaRS observational results

- ~44% of the 266 MaRS obs. contain Mm excess densities
 Mm occurrence is less sporadic than expected
- Most observed Mm appear over low crustal magnetic fields
 Wind shear mechanism unlikely for the observed Mm
- The Mm base is on average found at lower altitudes compared to the undisturbed MaRS profiles.
- Strong correlation of the Mm occurrence rate with the Suns activity.
- Neither the full profile TEC, nor the M1 TEC is significantly affected by the physical processes causing Mm.
 - Short solar X-ray or SEPs are needed for the primary ionization process in the altitude range of 70 – 110 km.
 - Potential ions
 - Meteoric material (Mg⁺)
 - Local ionospheric ions (O₂⁺, NO⁺)

MaRS radio science

Planeten forschung

MaRS radio science

Observed are ionospheric electrons, not ions!

Mm: Sporadic E / crustal magnetic field

B _{tot} [nT]		observations		B _{tot} [nT]		observations			
low	up	all [#]	Mm [#]	Mm [%]	low	up	all [#]	Mm [#]	Mm [%] .
0	10	200	95	47.5	80	90	1	0	0.0
10	20	37	13	<mark>35</mark> .1	90	100	1	1	100.0
20	30	9	2	22.2	100	110	0	0	0.0
30	40	2	0	0.0	110	120	2	0	0.0
40	50	8	3	37.5	120	130	0	0	0.0
50	60	5	2	40.0	130	140	0	0	0.0
60	70	1	1	100.0	140	150	0	0	0.0
70	80	0	0	0.0	150	160	1	0	0.0

B_{tot} in 400 km altitude from MGS MAG/ER observations, Connerney et al. 2001

Mm layers are available above regions with low crustal magnetic field

MaRS data sets

Mm_{a,3km} : all observations where Mm TEC > 3000m°3°noise level

Mm_{a,5km} : all observations where Mm TEC > 5000m°3°noise level

Mm_{c,*} : all observations where

- Lower baseline (LB) > 15 km
- Mm TEC > X m°3°noise level of the LB
- Mean offset < 6°noise level of the LB

Mm: solar flux dependence

Mm: solar flux dependence

Solar flux parameters from SIP V2.38 / Solar 2000, 1nm resolution, 1 data set/day (Tobiska et al. 2000)

- <u>Time and space calibration for</u> <u>the Mars position</u>
 - $-\Phi_{SUM} = 0.45 95 \text{ nm}$
 - full TEC + M2 el. density correlation
 - $-\Phi_{Xray}$ = 0.45 10 nm
 - M1 TEC + M1 el. density correlation
 - $-\Phi_{0.5-3.0} = 0.45 3 \text{ nm}$
- <u>Solar activity (no calibration)</u>

 $-\Phi_{EARTH} = 0.45 - 95 \text{ nm}$

Mm: solar flux dependence

	all	Mm _{a,3km}		
¢	[number]	[number]	[%]	
$\Phi_{\sf SUM}$				
low	39	15	38.5	
moderate	189	90	47.6	
high	38	12	31.6	
Φ_{Xray}				
low	28	8	28.6	
moderate	199	92	46.2	
high	39	17	43.6	
$\Phi_{ m 0.45-3.0}$				
low	100	41	41.0	
moderate	125	57	45.6	
high	41	19	46.3	
Φ_{EARTH}				
low	26	7	26.9	
moderate	207	92	44.4	
high	33	18	54.5	

Solar flux parameters from SIP V2.38 / Solar 2000, 1nm resolution, 1 data set/day (Tobiska et al. 2000)

- <u>Time and space calibration for</u> <u>the Mars position</u>
 - $-\Phi_{SUM}$ = 0.45 95 nm

full TEC + M2 el. density correlation

- $-\Phi_{Xray} = 0.45 10 \text{ nm}$ M1 TEC + M1 el. density correlation
- $-\Phi_{0.5-3.0}=0.45-3$ nm
- Solar activity (no calibration)

$$-\Phi_{\mathsf{EARTH}}$$
 = 0.45 – 95 nm

M2 vertical electron content

M2 electron density

M2 altitude

M1 parameter derivation

M1 vertical electron content

M1 electron density

M1 altitude

Mm: Local ions $O_2^+ \& NO^+$

- Planeten forschung er
- Main production processes for NO⁺ in the lower ionosphere are

 $O_2^+ + N \rightarrow NO^+ + O$ $O_2^+ + NO \rightarrow NO^+ + O_2$

- NO⁺ is assumed to be a terminal ion in the lower Mars ionosphere (several source reactions, but loss only by dissociative recombination).
- The balance between O₂⁺ and NO⁺ in the lower ionosphere depends on the local amount of N and NO.

IonA-2: Background

Boltzmann equation

$$\frac{\partial f_s^B}{\partial t} + \boldsymbol{v}_s \cdot \nabla f_s + \boldsymbol{a}_s \cdot \nabla_v f_s = \frac{\delta f_s}{\delta t}$$

Diffusion transport from the momentum equation

•
$$n_S w_S = -(K + D_S^m) \frac{\partial n_S}{\partial z} - n_S \left[K \left(\frac{\langle m \rangle g}{k_B T_N} + \frac{1}{T_N} \frac{\partial T_N}{\partial z} \right) + D_S^m \left(\frac{m_S g}{k_B T_S} + \frac{1 + \beta}{T_S} \frac{\partial T_S}{\partial z} \right) \right]$$
 (neutral)

•
$$n_s w_s = -D_s^a \left[\frac{\partial n_s}{\partial z} + n_s \left(\frac{m_s g}{2k_B T_P} + \frac{1}{T_P} \frac{\partial T_P}{\partial z} \right) \right]$$
 (ambipolar)

 Temporal density change of the individual species from the continuity equation

$$\frac{\partial n_u}{\partial t} + \frac{\partial}{\partial z}(n_u w_u) = P_u^{tot} - L_u^{tot}$$

<u>IonA-2 solar flux 0.5 – 800 nm</u>

Viking & MAVEN: electron temperature

- Viking lander in-situ observations
 - 20 July 1976 (23°N, L_s=97°, LST=16:13)
 - 3 September 1976 (48°N, L_s=118°, LST=9:49)
 - Start of northern summer, near aphelion, SZA ~ 45°
 - Solar minimum conditions (F10.7 ~ 70 at Earth)
- MAVEN deep dip September 2015 (*Vogt et al., 2017*)
 - 37 consecutive orbits from September 2. to September 9.
 - Lowering MAVEN periapsis below ionospheric peak for the first time on the planetary dayside
 - below 123 km altitude
 - Solar zenith angle 79° to 86° at main peak
 - Decreasing solar cycle (F10.7 ~ 88 at Earth)

Viking & MAVEN: electron temperature

TEMPERATURE (KELVIN)

Viking lander in-situ temperatures Hanson and Mantas, (1977) Electron temperature derived by *Rohrbaugh et al., (1979)* from Viking observations **Used in IonA-2**

Viking & MAVEN: electron temperature

- MAVEN-LPW T_e at ionospheric peak altitude much higher than in Viking observations
- Electron density equilibrium calculation of *Vogt et al., (2017)* without secondary ionization exceeds observed LPW main peak electron densities.

- F: ionizing flux $9 \cdot 10^{-4}$ W/m²
- α : O_2^+ diss. rec. coeff.
- H: scale height 10 km
- Ch: Chapman function for grazing incidence angle
- e: base of the natural logarithm
- N_m: calculated equilibrium electron density

Open questions: electron temperature

- MAVEN-LPW T_e at ionospheric peak altitude >> Viking observations
- Electron density equilibrium calculation of Vogt et al., (2017) from LPW T_e without secondary ionization exceeds observed LPW main peak electron densities.

Using the new MAVEN-LPW T_e in IonA-2 causes a large overestimation of the main peak electron density.

Open questions: MAVEN NGIMS N density

Open questions: MAVEN NGIMS N density

MAVEN NGIMS N density

NO/N in the upper atmosphere

• Primary reaction $N_2 + h\nu \rightarrow N + N(^2D)$

- Main loss process NO: $N + NO \rightarrow N_2 + O$
- Ionospheric process: $NO^+ + e^- \rightarrow N(^2D) + O$
- At night $N + O \rightarrow NO$

The remaining species is transported downwards into the Martian mesosphere.

Mm: Sporadic E / crustal magnetic field

