

Are "Habitable" Exoplanets **Really Habitable?** -- A perspective from atmospheric loss Chuanfei Dong **Princeton University** (dcfy@princeton.edu)

> Acknowledgement Manasvi Lingam, Harvard University Meng Jin, SETI Institute Zhenguang Huang, University of Michigan Yingjuan Ma, University of California, Los Angeles Ofer Cohen, University of Massachusetts Lowell

Outline

Motivation

- Model descriptions and inputs
- Multi-fluid MHD Model Applications

Ocean Planets, Proxima Centauri b, TRAPPIST-1 system

□Summary

Motivation: Volatile Loss

Credit: Ice Age 5 Movie

Where did the water and atmosphere on Mars go?

Image Credit: Blue Sky Studios

Movie Ice Age: Collision Course

Where did the water and atmosphere on Mars go?

Image Credit: Blue Sky Studios

Movie Ice Age: Collision Course

Ion Escape

solar wind -- the constant outpouring of solar particles that sweeps out into space Credit: NASA MAVEN TEAM

Habitable Zone of our Solar system

3-D BATS-R-US Multi-Fluid MHD (MF-MHD) for Water Worlds [Dong et al. 2017a, ApJL]

- \Box Three ion fluids: H^+ , H_2O^+ , e^- ;
- Spherical grids:
 Computational domain:

 - -40 $R_M \le X \le 25R_M$, -50 $R_M \le Y$, $Z \le 50R_M$ Radial resolution varies from 5 km in the ionosphere (~100 km) to thousands of kms far from the planet.
 - Angular resolution is 3°.

Inner boundary conditions

- Inner boundary at 100 km
- lons are in photochemical equilibrium (SZA and optical depth considered)
- Absorbing boundary condition for Ú, R

Chemical reactions

- Photoionization
- Charge exchange
- Electron impact ionization •
- Electron recombination

Illustration of the grid system used in the calculation. X axis: from planet to star Z axis: normal to planet's orbital plane (+: upward) Y axis: completes the right-hand coordinate system

Plasma Beta

Alfvén Wave Solar Model (AWSOM)

- **Data-driven** inner boundary condition by synoptic magnetograms.
- Coronal heating and solar wind accelerating by Alfven waves.
- Physically consistent treatment of wave reflection, dissipation, and heat partitioning between the electrons and protons.
- Model starts from upper chromosphere including heat conduction (both collisional and collisionless) and radiative cooling.
- Adaptive mesh refinement (AMR) to resolve structures (e.g., current sheets, shocks). *References: van der Holst et al. 2010,* Manchester et al. 2012, Jin et al. 2012, Sokolov et al. 2013, Oran et al. 2013, Jin et al. 2013, van der Holst et al. 2014

The dehydration of water worlds via atmospheric losses

News story: www.universetoday.com

Water Worlds Stellar Wind Input Parameters

	$n_{sw}~({ m cm}^{-3})$	$v_{sw}~(km/s)$	IMF (nT)	Radiation	${\rm H_2O^+}$ loss rate (s ⁻¹)
Current	8.7	(-468, 0, 0)	(-4.4, 4.4, 0)	1 EUV	6.7×10^{25}
Early	136.7	(-910, 0, 0)	(-15.6, 30.2, 0)	$12 \mathrm{EUV}$	$6.0 imes 10^{26}$
Carrington Event	424.5	(-1937.5, 6.7, -13.0)	(0, 23.0, -194.3)	12 EUV	7.3×10^{27}

Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech

Water Worlds/Ocean Planets

Dong et al., 2017a, ApJL

Photoionization

Electron impact ionization

Charge exchange

Dong et al., 2017a, ApJL

An active Red Dwarf by Chuck Carter.

Is Proxima Centauri b habitable? -- A study of atmospheric loss

News story: SPACE.COM

Proxima Centauri b (PCb)

PCb Stellar Wind Input Parameters

Case s	n _{sw} (cm⁻³)	T _{sw} (K)	v _{sw} (Km s⁻¹)	IMF (nT)	
C1	21400	8.42×1 0 ⁵	(-833,150,0)	(0,0,-227)	
C2 After Tabl	2460 e 2 of Dong e	9.53×1 6 ^{5,2017b} ,	(-1080,150,0) ApJL; Garrafo et	(0,0 - 997) a., 2016, Ap	
Earthe	17(91) corres	2.5×1105e	(+-2200,0,0)dyn ar	i ∣B] a 7over	
 one orbital period of PCb. Case 2 (C2) corresponds to minimum P_{dyn} and P_{tot}, but with the maximum P_{mag}. Dynamic pressure P_{dyn} = m_pn_{sw}v_{sw}² (m_p is proton mass), Magnetic pressure P_{mag} = B²/(2µ0) and 					

• Total pressure $P_{tot} = P_{dyn} + P_{mag}$.

O⁺ Ion Density and Magnetic Field Strength

Ion Escape Rates in Different Cases

The atmosphere depletion could occur over $O(10^8)$ and $O(10^9)$ years for C1-M and C2-M, respectively.

Ion Escape Rates in s^{-1} $\mathbf{0}^+$ Total CO_2^+ O_{2}^{+} PCb with 1 bar Surface Pressure 2.4×10^{27} 3.3×10^{26} 1.8×10^{27} 2.4×10^{26} C1-UnM^a 1.1×10^{27} 9.5×10^{25} 8.2×10^{25} 1.3×10^{27} C2-UnM C1-M^b 7.3×10^{26} 5.8×10^{26} 1.8×10^{27} 5.4×10^{26} 5.9×10^{25} 8.7×10^{25} 5.3×10^{25} 2.0×10^{26} C2-M PCb with 93 bar Surface Pressure^c Have the potential <u>for habitability</u> 3.7×10^{27} 1.4×10^{23} 3.7×10^{27} 4.1×10^{24} $C1-UnM_{93}$

Table 2 of Dong et al. (2017b) ApJL

Ionospheric Profiles along Substellar Lines

□ The ionoshperic profiles are mostly unaffected by the stellar wind conditions at ≤200 km.

If unmagnetized

Is Proxima Centauri b Habitable?

If magnetized, possible

Atmospheric escape from the TRAPPIST-1 planets and implications for habitability

News story: www.theguardian.com www.forbes.com

TRAPPIST-1 System

Green band: habitable zone

Illustration

TRAPPIST-1 stellar wind

TRAPPIST-1b and TRAPPIST-1g

No shock due to submagnetosonic nature!

	O ⁺	O_2^+	CO_2^+	Total			
Maximum total pressure							
Trappist-1b	5.56×10^{27}	2.09×10^{26}	1.52×10^{26}	5.92×10^{27}			
Trappist-1c	1.54×10^{27}	1.38×10^{26}	1.32×10^{26}	1.81×10^{27}			
Trappist-1d	1.29×10^{27}	3.80×10^{25}	1.14×10^{25}	1.34×10^{27}			
Trappist-1e	7.01×10^{26}	2.83×10^{25}	1.10×10^{25}	7.40×10^{26}			
Trappist-1f	5.23×10^{26}	3.37×10^{25}	1.19×10^{25}	5.68×10^{26}			
Trappist-1g	2.17×10^{26}	2.71×10^{25}	1.32×10^{25}	2.58×10^{26}			
Trappist-1h	1.06×10^{26}	1.65×10^{25}	6.98×10^{24}	1.29×10^{26}			
	Minimum total pressure						
Trappist-1b	9.33×10^{26}	4.99×10^{25}	2.92×10^{25}	1.01×10^{27}			
Trappist-1c	4.23×10^{26}	9.22×10^{25}	2.76×10^{25}	5.42×10^{26}			
Trappist-1d	2.81×10^{26}	3.07×10^{25}	1.04×10^{25}	3.23×10^{26}			
Trappist-1e	2.20×10^{26}	4.19×10^{25}	1.25×10^{25}	2.74×10^{26}			
Trappist-1f	1.88×10^{26}	4.30×10^{25}	1.10×10^{25}	2.42×10^{26}			
Trappist-1g	9.33×10^{25}	5.85×10^{25}	1.38×10^{25}	1.66×10^{26}			
Trappist-1h	4.52×10^{25}	2.69×10^{25}	4.39×10^{24}	7.66×10^{25}			

A Stellar CME

- This simulation is to demonstrate the influence of Young Sun-like star's fast rotational rate on the CME propagation.
- With a tighter Parker spiral, the CME could impact a larger longitudinal region and the CME propagation is non-radial.

Role of Stellar Energetic Particles on Prebiotic Chemistry

Summary

Exoplanetary space weather and stellar windinduced atmospheric loss need to be taken into account for planetary habitability!

(1) For water worlds orbiting Sun-like stars, we find that Earth-like oceans (with a total mass of $\sim 10^{24}$ g) will not be evaporated over Gyr timescales as the ion escape rates are far too low (by 3-4 orders of magnitude). In contrast, for exoplanets in the close-in HZ of M-dwarfs, the situation may be very different (next study).

(3) PCb has the potential for habitability only if it is magnetized (i.e., has global magnetic field).

(4) TRAPPIST-1g will represent the best chance for a planet in the HZ of this planetary system to support a stable atmosphere over long periods.

Thanks for Your Attention!

The March 8th ICME event

Variation in Ion Escape Rate

			\frown	
Escape Rate: (x 10 ²⁴ s ⁻¹)	Case 1 (pre-ICME phase)	Case 2 (early sheath phase)	Case 3 (late sheath phase)	Case 4 (ejecta phase)
Total ion escape rate	2.05	5.62	22.5	8.10
O ⁺ escape rate	0.60	0.72	1.92	0.92
O ₂ ⁺ escape rate	1.28	4.40	18.7	6.37
CO ₂ ⁺ escape rate	0.17	0.51	1.88	0.81

• ICMEs are important for understanding how a more active, early Sun may have removed much of Mars' atmosphere!

Ionospheric Ion Density Model vs NGIMS Ion Data

3-D Mars Global Ionosphere Thermosphere Model (M-GITM) [Bougher et al. 2015, JGR] M-GITM Outputs at

- □ Altitude Range 0-250 km
 - typical 2.5 km vertical resolution
 - no hydrostatic assumption
- □ Flexible horizontal resolution
 - 5x5° latitude-longitude grid
- Neutrals fields:
 - T, U, V, W (T, winds)
 - O, CO₂, CO, N₂, Ar, O₂ (major)
 - N(⁴S), NO, etc. (minor)
- \Box PCE lons: CO₂⁺, O⁺, O₂⁺, N₂⁺, NO⁺
 - Sources and losses explicitly calculated
- Lower Atmosphere Physics
 - patterned after NASA Ames MGCM
- Upper Atmosphere Physics
 - patterned after Michigan MTGCM

~200 km:

Longitude

3-D Mars Adaptive Mesh Particle Simulator (M-AMPS) [Lee et al. 2015, JGR]

- DSMC (Direct Simulation Monte Carlo) method
 - Approximates the Boltzmann equation and is valid for all gas flow regimes in the Martian atmosphere

Adaptive Block Mesh Refinement (AMR)

- Accurate and less expensive computation by using the optimum (local) spacing
- Cut-cell method reduces computational resource and time

Model Details

- Upper boundary at ~5 Mars radii
- Interaction with background atmosphere is simulated in 3-D
- Transitional domain: No hard exobase. Production & collisions near the regions where $k_n = 1$ are simulated

dissociative recombination: $O_2^++e^- -> O^*+O^*$

	O^+	O_2^+	CO_2^+	Total		
Maximum total pressure						
Trappist-1b	5.56×10^{27}	2.09×10^{26}	1.52×10^{26}	5.92×10^{27}		
Trappist-1c	1.54×10^{27}	1.38×10^{26}	1.32×10^{26}	1.81×10^{27}		
Trappist-1d	1.29×10^{27}	3.80×10^{25}	1.14×10^{25}	1.34×10^{27}		
Trappist-1e	7.01×10^{26}	2.83×10^{25}	1.10×10^{25}	7.40×10^{26}		
Trappist-1f	5.23×10^{26}	3.37×10^{25}	1.19×10^{25}	5.68×10^{26}		
Trappist-1g	2.17×10^{26}	2.71×10^{25}	1.32×10^{25}	2.58×10^{26}		
Trappist-1h	1.06×10^{26}	1.65×10^{25}	6.98×10^{24}	1.29×10^{26}		
Minimum total pressure						
Trappist-1b	9.33×10^{26}	4.99×10^{25}	2.92×10^{25}	1.01×10^{27}		
Trappist-1c	4.23×10^{26}	9.22×10^{25}	2.76×10^{25}	5.42×10^{26}		
Trappist-1d	2.81×10^{26}	3.07×10^{25}	1.04×10^{25}	3.23×10^{26}		
Trappist-1e	2.20×10^{26}	4.19×10^{25}	1.25×10^{25}	2.74×10^{26}		
Trappist-1f	1.88×10^{26}	4.30×10^{25}	1.10×10^{25}	2.42×10^{26}		
Trappist-1g	9.33×10^{25}	5.85×10^{25}	1.38×10^{25}	1.66×10^{26}		
Trappist-1h	4.52×10^{25}	2.69×10^{25}	4.39×10^{24}	7.66×10^{25}		