

Momentum Transfer and Boundary Layer Structure at Mars

J. S. Halekas^{*}, D.A. Brain, Y. Ma, J.G. Luhmann, G.A. DiBraccio, S. Ruhunusiri, J.P. McFadden, D.L. Mitchell

> *Department of Physics and Astronomy University of Iowa

Mars-Solar Wind Interaction

Multi-Fluid Force Model

$$\begin{split} & \underset{(\operatorname{Pickup}, \operatorname{Mass-Loading})}{\operatorname{Magnetic}} & \underset{Pressure}{\operatorname{Pressure}}, \\ & \underset{Tension}{\operatorname{Particle}} \\ & \underset{Pressure}{\operatorname{Pressure}}, \\ & \underset{Tension}{\operatorname{Fission}} \\ & \overrightarrow{F_p} = m_p n_p \left(\frac{\partial}{\partial t} + \overrightarrow{v_p} \cdot \nabla \right) \overrightarrow{v_p} = \frac{n_p}{n_e} \left[q n_h (\overrightarrow{v_p} - \overrightarrow{v_h}) \times \overrightarrow{B} + \overrightarrow{J} \times \overrightarrow{B} - \nabla P_e \right] - \nabla \cdot \overrightarrow{P_p} \\ & \overrightarrow{F_h} = m_h n_h \left(\frac{\partial}{\partial t} + \overrightarrow{v_h} \cdot \nabla \right) \overrightarrow{v_h} = \frac{n_h}{n_e} \left[q n_p (\overrightarrow{v_h} - \overrightarrow{v_p}) \times \overrightarrow{B} + \overrightarrow{J} \times \overrightarrow{B} - \nabla P_e \right] - \nabla \cdot \overrightarrow{P_h} \end{split}$$

First order model for solar wind protons interacting with heavy planetary ions

Forces on Solar Wind Protons

Forces on Martian Heavy Ions

Ion Composition

Ion Composition Boundary Forces

Boundary Layer Fits

- Fit boundary density ratio to functional form $f(t) = A_0 + A_1 * tanh[(t-A_2)/A_3]$
- Convert 2*A₃ to spatial thickness using spacecraft velocity normal to average boundary

Boundary Layer Position

- Average ICB close to nominal MPB, but less flared in tail
- ICB asymmetric in MSE

Boundary Layer Thickness

Boundary Layer Asymmetries

Boundary Layer Asymmetries II

Boundary farther out over crustal magnetic fields

Boundary thickness unaffected by crustal magnetic fields

Boundary Layer Solar Wind Dependence

Boundary compressed by solar wind ram pressure

Boundary insensitive to solar wind Mach number

Boundary Layer EUV Dependence

Boundary position doesn't depend on EUV...

But boundary thickness does!

Pressure Balance at Boundary Layer

- Tangential magnetic field balances normal component of solar wind ram pressure
- Pressure balance already established by the outer edge of the composition boundary
- Excess of magnetic pressure result of crustal magnetic fields?

Magnetic Field Jump

- ICB ≠ MPB (at least not the same thickness!)

Density Jump

- Heavy ion density increases across boundary
- Proton density usually drops across boundary

Speed Jump

Both heavy ion and proton speed are lower inside the boundary

Conclusions

- The transition in composition between solar wind and planetary ions is part of a complex boundary layer
 - The ion composition boundary (ICB) is not (always) the same as either the MPB or the ionopause
 - The ICB has significant asymmetries in both location and thickness, ultimately resulting from the asymmetry of the Lorentz force