Comparative Planetary Foreshocks: Results from recent studies

Karim Meziane

University of New Brunswick
Outline

• Motivation
• Bow shock curvature
• New results from MAVEN
• Venus’ similarity with Earth
• Quasi-parallel structures
• Conclusion
The Foreshock

- Ion foreshock
- Electron foreshock
- Shock wave
- Magnetosheath
- Solar wind
- Earth
- Magnetosphere
Motivation

- Availability of critical data collection from various planets presenting different physical contexts
- In depth understanding of foreshock formation
- Insights on shocks

<table>
<thead>
<tr>
<th>Mission</th>
<th>Number</th>
<th>Year</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mariner</td>
<td>2</td>
<td>1962</td>
<td>Flyby</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1967</td>
<td>Flyby</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1974</td>
<td>Flyby</td>
</tr>
<tr>
<td>Venera</td>
<td>4</td>
<td>1967</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5, 6</td>
<td>1969</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9, 10</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15, 16</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>Pioneer</td>
<td></td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td>Vega 1-2</td>
<td></td>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td></td>
<td>1990</td>
<td>Flyby</td>
</tr>
<tr>
<td>Cassini</td>
<td></td>
<td>1998</td>
<td>Flyby</td>
</tr>
<tr>
<td>Messenger</td>
<td></td>
<td>2006</td>
<td>Flyby</td>
</tr>
<tr>
<td>Venus EXpress</td>
<td></td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>MOM</td>
<td></td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>MAVEN</td>
<td></td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>ExoMars T. G.</td>
<td></td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>MGS</td>
<td></td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>Mars Odyssey</td>
<td></td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Mars EXpress</td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Akatsuki</td>
<td></td>
<td>2015</td>
<td>Now</td>
</tr>
</tbody>
</table>
Bow shock scale & Particle orbit

<table>
<thead>
<tr>
<th>Planet</th>
<th>R_p/R_E</th>
<th>Standoff/Scale H.</th>
<th>IMF B/B_E</th>
<th>Parker IMF θ_{Bx}</th>
<th>Radius Curvature/ρ_i</th>
<th>Drift Length η_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1</td>
<td>13.5</td>
<td>1</td>
<td>45°</td>
<td>222</td>
<td>1</td>
</tr>
<tr>
<td>Venus</td>
<td>0.95</td>
<td>1.4</td>
<td>1.7</td>
<td>36°</td>
<td>25</td>
<td>0.13</td>
</tr>
<tr>
<td>Mars</td>
<td>0.63</td>
<td>1.6</td>
<td>0.4</td>
<td>57°</td>
<td>4 [O⁺: 0.25]</td>
<td>0.02</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.1</td>
<td>26</td>
<td>0.04</td>
<td>84°</td>
<td>224</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Venus & Mars: Bow shock inside H–exosphere

Guiding center approximation (for ions) NOT valid in case of Mars
Bow shock scale

[Slavin et al., 1985]
Maximum Particle Energization

Electric field tangent to the shock
\[\mathcal{E}_t = BV \sin \theta_{RX} \]

Particle energization while drifting for a distance \(l \)
\[\Delta E = q\mathcal{E}_t l = qBVl \sin \theta_{RX} \]

For a nearly perpendicular drift
\[l \sim L \sqrt{1 + \frac{X_0}{L}}, \quad L = \text{semilatus}, \; X_0 = \text{conic section focus} \]

Comparison with Earth bow shock
\[\eta_{90} = \frac{(\Delta E)_{\text{Planet}}}{(\Delta E)_{\text{Earth}}} \sim \left[\frac{B \sin \theta_{RX} L \sqrt{1 + 2X_0/L}}{B \sin \theta_{RX} L \sqrt{1 + 2X_0/L}} \right]_{\text{Planet}} \times \frac{R_P}{R_E} \]
The terrestrial foreshock prototype

Electrons Spikes up to ~ 100 keV

ULF Wave Boundary

Except for FABs, One-to-One Association Backstreaming ions - ULF Waves

[Skadron & Lee, 1988]
[Le & Russell, 1992]
[Meziane et al., 2004]
Ions as a proxy for magnetic connection
For the terrestrial foreshock
Two Foreshock Electron Populations

Meziane et al., 2017

Monotonically decreasing fluxes from Q_\parallel to Q_\perp
Ring beam distributions indicate a coherent reflection of solar wind electrons

02/Jcn/2015 17:00:16.325
Foreshock ions

Solar wind direct interaction with the Martian exosphere.
Newly-ionized neutrals are picked up by the IMF → Energy source for PCWs
Pickup ions as “seed population” for a coherent acceleration (SDA and/or shock surfing)
MAVEN Foreshock Ions

Do ions escape upstream?
Shock geometry & nature of distribution functions?
Is there any association with ULF waves?

Solar Wind

Upstream Ions

Shock

ρ_p

Q_\parallel

Q_\perp

Q_\parallel

Q_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp

B_\parallel

B_\perp
MAVEN Foreshock Ions

Solar Wind

Reflected? Pickup ions?
Pickup ions & Reflected?

In the solar wind Frame of reference

\[E \sim E_{SW} \]
\[\text{Pitch-Angle} \sim \theta_{BV} \]

Pitch-angle \sim \theta_{Bn}
Do not escape Upstream
Martian foreshock

- **Electrons**
 - Entire shock as a source of backstreaming electrons
 - Two populations
 - Spikes at $\theta_{Bn} \sim 90^\circ$ [similar to Earth]
 - Broad source
 - Spikes maximum energy $E \sim \eta_{90} \times 100 \text{ keV} \sim 2 \text{ keV}$
 - Contribute to the pickup ion production

- **Ions**
 - An assessment (velocity distribution, shock geometry, maximum acceleration, ...) and a comprehensive understanding [no planer kinetic analysis] are needed.
 - Association with ULF waves?
 - Shock Pickup ion acceleration
 - The impact of the shock foot (no longer microscopic)
Venus

[Futanaa et al., 2017]

<table>
<thead>
<tr>
<th>Mission</th>
<th>Year</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mariner</td>
<td>1962</td>
<td>Flyby</td>
</tr>
<tr>
<td>5</td>
<td>1967</td>
<td>Flyby</td>
</tr>
<tr>
<td>10</td>
<td>1974</td>
<td>Flyby</td>
</tr>
<tr>
<td>Venera</td>
<td>1967</td>
<td>Flyby</td>
</tr>
<tr>
<td>5, 6</td>
<td>1969</td>
<td>Flyby</td>
</tr>
<tr>
<td>7</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td>9, 10</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>15, 16</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>Pioneer</td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td>Vega 1-2</td>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td>1990</td>
<td>Flyby</td>
</tr>
<tr>
<td>Cassini</td>
<td>1998</td>
<td>Flyby</td>
</tr>
<tr>
<td>Messenger</td>
<td>2006</td>
<td>Flyby</td>
</tr>
<tr>
<td>VEX</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Akatsuki</td>
<td>2015</td>
<td>Now</td>
</tr>
</tbody>
</table>
Electron Foreshock

Strong similarity with the Terrestrial foreshock.

Pioneer Venus Orbiter
[Crawford et al., 1993]
Plasma waves emission produced by electron beam propagation.

A natural laboratory for nonlinear processes (structures at various spatio-temporal scales).

Galileo flyby, 1990 Feb. 10

[Hospodarsky et al., 1994]
Ubiquitous energetic ions?

Galileo flyby, 1990 Feb. 10

Antisolar hemisphere 120-280 keV ions during a quite time (SW)

Coming from Venus-foreshock direction with $\theta_{Bn} > 45^\circ$

Power law spectrum \rightarrow SDA rather than Fermi (exponential spectrum)

Pickup ions as only possible seed

Energetic ions must be ubiquitous?

[Williams et al., 1991]
Quasi-monochromatic ULF waves at Venus

- The periods of the waves shown are 18.1±1 s, while the local proton cyclotron periods is 12.1 s.
- The transverse part always dominates the power spectrum.
- Wave propagation direction is nearly along x_{VSO} (Venus-Sun line) and B.
- This waves present left-handed polarization with respect to background field.
- Backstreaming foreshock ions are associated with the waves.
Backstreaming Populations & ULF Waves

Isotropic ions?

FABs [Yamauchi et al., 2011]

18/Jun/2006
Venus’ similarity with Earth: The existence of the ULF wave foreshock boundary

[Lican et al., 2018]

<table>
<thead>
<tr>
<th></th>
<th>IMF θ_{BX}</th>
<th>ULF-Wave boundary slope</th>
<th>Ion Vel. Along boundary (VSW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>45°</td>
<td>78°</td>
<td>1.68</td>
</tr>
<tr>
<td>Venus</td>
<td>45°</td>
<td>77°</td>
<td>1.23</td>
</tr>
</tbody>
</table>
Specularly reflected

Source of Field-Aligned Beams?

1 Larmor radius?
Venusian Foreshock

• Similarities
 – Electron foreshock
 – ULF Boundary

• Investigations, quantitative in nature remain to be addressed
 – Ion velocity & shock geometry
 – Associations with ULF waves
 – Populations assessment

• Pickup ions as an ubiquitous seed for coherent particle-shock interaction (SDA , Surfing)
FORESHOCK STRUCTURES

[Collinson et al., 2015]

THEMIS

MAVEN