

The Origin and Evolution of Nitrogen in Outer Planet Atmospheres through Comparative Planetology

Kathleen Mandt¹, A. Luspay-Kuti^{TBD}, and O. Mousis², P. Brandt¹, P. Kollmann¹

(1) Johns Hopkins University Applied Physics Laboratory (JHU/APL)

(2) El Laboratoire D'Astrophysique De Marseille (LAM)

Comparative Planetology is critical for evaluating the origin of volatiles in Solar System bodies

	e 2 Getty mager		
Radius (km)	2575	1188	1353
Surface pressure (bar)	1.5	~10 ⁻¹² (<i>N.H.</i> flyby)	1.6 x 10 ⁻⁵
Surface temp. (K)	90	~35	> 36
Distance from Sun (AU)	10	30-50	30

Titan, Pluto and Triton have N₂ atmospheres with complex chemistry. Each tells a unique story of Solar System formation and evolution.

Artwork credit: Elsa Mandt

Isotopes as Tracers

• Processes

- Venus: original water content
- Mars: atmospheric loss
- Titan: photochemistry, escape and evolution
- Can be applied on a larger scale to study Solar System formation and evolution

Isotopes are useful for tracing short term proce

Comparative Planetology of the origin of Nitrogen in the Atmospheres of Titan, Pluto and Triton

- Primordial (triangles) ratios represent values preserved from the Protosolar Nebula (PSN)
 - Jupiter
 - Solar Wind
 - Comets
 - Meteorites
- Evolved (circles) ratios have changed over time
 - Terrestrial planets and Titan
 - Not measured: Pluto & Triton

Determining the origin of nitrogen in these atmospheres requires an understanding of how the atmosphere has evolved over time.

Modeling the evolution of an atmosphere

$$\frac{dn}{dt} = P - L$$

- The inventory of a constituent varies over time based on production and loss processes
- Fractionation occurs when there is a difference in the relative production or loss rates of constituents and their isotopes
 - e.g. Escape The lighter isotope escapes more easily than the heavier, resulting in a lighter ratio over time
- Fractionation changes the measured ratio in an atmosphere over geologic time scales

f = fractionation factor

Evolution of ¹²C/¹³C in CH₄ at Titan shows that methane has not been present over all of Titan's history (Mandt et al., 2009; 2012)

APL

Fractionating Processes in Planetary Atmospheres

Photochemistry – in an N₂-dominated atmosphere makes the ratio higher over time

Escape – always makes the ratio lower over time

Fractionation occurs due to production and loss of the constituent of interest – escape and photochemistry are both loss processes

Atmospheres Evolve Differently: Nitrogen isotopes at Titan do not evolve significantly, but Mars isotopes do

• Titan

- Origin of nitrogen traced by primordial ratio
- Look for upper limit only evaluate escape
- Origin must be NH₃ from the Protosolar Nebula

• Mars

- Titan can't evolve much, what about Mars?
- Mars can because the loss rate relative to the column density is so much larger than Titan's

What about Pluto's Nitrogen?

• Origin of nitrogen

- Start with assumed primordial: N_2 or NH_3
- Evaluate evolution to current ratio
- Escape is slow Jeans
- How effective is photochemistry?
 - ALMA lower limit for ¹⁴N/¹⁵N in HCN (Lellouch et al., 2017)
 - Can we use this to constrain N_2 ?

The New Horizons observations showed that Pluto has new processes to consider

Lessons from the C₂H_y profiles

Atmospheric inversion – add loss processes (Willacy et al. 2016 for Titan)

- Condensation not efficient
- Aerosol trapping
 - Efficiency decreases with altitude
 - Aerosol properties change
- Pluto's aerosols are sticky! (Dimitrov & Bar-Nun, 2002)
 - Stickiness inversely proportional to aerosol surface area
 - Life cycle of growing, aging, descending
 - Hardening with aging like on Titan

As shown for Titan, HCN affected by condensation and aerosol trapping

Nitrogen fractionation at Pluto is not as clear as at Titan

Parameter	Titan			Pluto: F10.7=110	
	Max	Mod	Min	Chem	Full
¹⁴ N ₂ Production (cm ⁻² s ⁻¹)	$1.17 \ge 10^9$	$9.46 \ge 10^8$	$7.41 \ge 10^8$	$4.37 \ge 10^5$	$4.49 \ge 10^5$
¹⁴ N ₂ Loss (cm ⁻² s ⁻¹)	1.76 x 10 ⁹	1.35 x 10 ⁹	9.29 x 10 ⁸	$9.60 \ge 10^5$	$9.72 \ge 10^5$
¹⁴ N ¹⁵ N Production (cm ⁻² s ⁻¹)	1.28 x 10 ⁷	1.04 x 10 ⁷	$8.22 \ge 10^6$	1.62 x 10 ³	1.67 x 10 ³
¹⁴ N ¹⁵ N Loss (cm ⁻² s ⁻¹)	2.37 x 10 ⁷	1.80 x 10 ⁷	1.24 x 10 ⁷	$3.55 \ge 10^3$	$3.58 \ge 10^3$
¹⁴ N/ ¹⁵ N in N ₂ column	169.2	169.2	169.1	449.8	450.0
density					
¹⁴ N/ ¹⁵ N in HCN column	106.3	101.2	82.6	449.5	43.5
density					
$^{14}N/^{15}N$ observed in N ₂	167.6±0.6		n/a		
¹⁴ N/ ¹⁵ N observed in HCN	68.6±15.7		> 125		
f_{p1} from HCN observations	2.44±0.56		n/a		
f_{p1} based on HCN	1.59	1.67	2.05	1.00	10.34
f_{p2} based on loss rates	1.56	1.58	1.86	0.83	0.83

Uncertainty in Chemical Fractionation: Evolution at Pluto Poorly Constrained

- Self-shielding
 - Major impact on nitrogen isotope chemistry at Titan
 - Very little effect at Pluto
- Condensation and aerosol trapping
 - Appear to have major impact on nitrogen isotopes in HCN
 - Not in agreement with observations
 - What isotope effect are we missing?

• Implications for Triton

- Lower escape rates than Pluto
- Same issues with chemistry
- An Ice Giants mission to Neptune would answer questions about Pluto and Triton

Summary and Next Steps

• Titan

- Originated as NH₃ in the PSN
- Cold conditions for building blocks
- Next step is noble gas comparisons with Rosetta results
- Pluto and Triton
 - Condensation and aerosols are a major problem
 - Need more modeling studies
 - More observations with ALMA

• Future mission needs

- Measurements of noble gas abundances and isotope ratios
- More comparative planetology studies
- Let's go to the Ice Giants!!

Abundances of Measured Species Relative to Measured Carbon compared to Solar Abundances Relative to Solar Carbon

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Photochemical fractionation: 2 methods

1600

1500

1400

1300

1200

900

800

700

600

2

(E) pp 1100 pp 1100 P 1000

 Observations of ¹⁴N/¹⁵N in N₂ and a photochemical product

> reactant product

• Model the loss of ${}^{14}N_2$ and ¹⁴N¹⁵N with validation

$$f = \frac{L_2}{L_1} \cdot \frac{1}{R}$$

Both methods have limitations

Escape fractionation

- Atmospheric models are needed to constrain how escape fractionates the isotopes
 - Sputtering
 - Ratio at the surface
 - Homopause and exobase
 - Temperature profile
 - Jeans escape
 - Exobase parameters
 - Hydrodynamic escape
 - Critical mass for escape
- Best results when models are validated with observations

Rosetta, a single comet mission with a powerful instrument, has contributed significantly to our understanding of the composition of the Solar System

- D/H ratio in water highest yet, but varies by a factor of 2 among measurements (Altwegg et al. 2014, 2017)
- Two noble gas measurements, with isotopologues (Balsiger et al. 2016; Marty et al. 2017)
- Bulk abundances and isotope ratios of Carbon (Le Roy et al. 2015; Haessig et al. 2017)

Application to Exoplanet Systems

Near Term Goals →	Mid-Term Goals →	Long-Term Goals →
 In the Solar System Measurements with current capabilities Photochemistry Formation models Laboratory studies Reactions Sublimation Condensation Exoplanets Molecule detection Understand haze Advance models 	 In the Solar System New remote & in situ measurement capabilities Advanced models Laboratory studies Exoplanets New detections & abundance Model current atmosphere Model formation and evolution 	 In the Solar System Multiple sample returns – Moon, asteroids, comets, Mars, etc. Laboratory studies Exoplanets Isotope detection & abundances in multiple planets of same system More modeling

 \rightarrow Use the solar system as an analog for exoplanet observations \rightarrow

A mission to the lce **Giants advances NASA Goals:**

Formation

- How did the solar system form?
- Giant planets and small bodies are time capsules of formation

Evolution

- Atmospheres evolve over time
- Comparative Planetology
 - Small icy bodies are time capsules
 - Larger icy bodies have atmospheres that evolved

www.nasa.go

A mission to the Ice Giants could help us to understand how icy bodies like Pluto and Triton formed and the history of the Neptune system

- Titan isotopes are similar to comets
 - What about cometary noble gases?
- Pluto and Triton
 - If their nitrogen originated as N₂, primordial ratio will be like Jupiter
 - Atmospheric evolution could make the current ratio more like NH₃
- Comets, Titan, Pluto and Triton
 - Composition is an essential tool for understanding how much icy bodies contributed to the gas giants
 - A big question is how the ice giants compare to the gas giants?

NASA Planetary Science Questions

- Science Questions
 - How did life begin and evolve on Earth?
 - How did the Solar System evolve?
 - How did the Sun's family originate?
 - What are the characteristics of the Solar System?
- Strategic objective from 2014 plan: Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere
 - How did our solar system form and evolve?
 - Is there life beyond Earth?
 - What are the hazards to life on Earth?

The overall picture of Solar System composition is limited: An Ice Giants mission is needed

- Most important measurements for Origins research
 - Noble gases
 - Isotope ratios

• Limitations

- Small number of samples
- Large uncertainties
- The Rosetta mission is an important analogy for addressing this need

Abundances of Measured Species Relative to Measured Carbon compared to Solar Abundances Relative to Solar Carbon

We applie current is

- What is the sourcomponent of t
 - N₂ if formatio
 - NH₃ for highe
 - Origin tells us
- Limitation of cu
 - No ¹⁴N/¹⁵N in
 - ALMA lower
 - No noble gas
- Modeling
 - Only option u observations
 - Limitations of influence the

dict a

 Triton is the ideal target for comparative planetology with Pluto!

Outputs of modeling the evolution of the isotopic ratios

Time scale

 The time scale can be derived by integrating the production and loss equation over time for both the light and heavy isotopes

Total Inventory

 The fractionation factor defines the total amount of a species fractionated using the Rayleigh distillation relationship

Initial Ratio

- If the initial ratio is not known, but the processes are well-understood, upper and/or lower boundaries can be determined
- Determining an initial ratio has implications for the formation of Titan

$$\frac{dn}{dt} = P - L$$

$$\frac{n_1^0}{n_1} = \left(\frac{R}{R_0}\right)^{(1/(1-f))}$$