Cold Ion Outflow and Magnetic Topology in Mars' Magnetotail

52nd ESLAB Symposium May 17, 2018

mitchell@ssl.berkeley.edu

Oxygen Ion Loss from MAVEN

Dong et al. 2015

Oxygen Ion Loss from Mars Express

Escape rate increases as lower energy threshold decreases.

Trans-terminator flow (Fränz et al. 2010)

- Assume flow is strictly tailward with an isotropic temperature.
- Assume loss rate is cylindrically symmetric around terminator.

"Statistical" 3D distributions (Nilsson et al 2011)

 Combine many 2D observations in different orientations.

MAVEN Cold Ion Campaigns

- 5 sweeps through the tail
- 1200 5000 km altitude $(1.3 2.5 \text{ R}_{\text{M}})$
- STATIC and SWEA fields of view optimized
- Magnetic topology from SWEA and MAG
- Spacecraft potential from SWEA, STATIC, LPW
- Ion distribution functions from STATIC, corrected for spacecraft potential and motion
- Determine ion outflow down to and below escape velocity

MAVEN Cold Ion Campaigns

- What are properties of the outflow?
 - composition, temperature, velocity
 - morphology and variability
- How does outflow depend on magnetic topology? What accelerates the ions?
- What are the loss rates of different species and the total loss rate, and how does this compare with previous estimates?
- How does outflow depend on drivers?

Sampling for Campaigns A-D

All measurements obtained during low solar activity.

(September 2017 event occurred between Campaigns C and D.)

Two-Stream Shape Parameter (Xu and Mitchell)

Ion Outflow in the Tail - Overall

All topologies, all crustal field orientations, all upstream conditions

Ion Outflow in the Tail - Overall

All topologies, all crustal field orientations, all upstream conditions

Magnetic Topology Organizes the Data

Cold Ion Loss on Open Field Lines Exhibits a North Bias

Data: all upstream conditions and planet rotations

Simulation: ensemble of 8 multi-species, single-fluid models (C. Dong, Y. Ma, J. Luhmann)

O₂⁺ Night-Side Density: Dawn-Dusk Asymmetry?

O₂⁺ Temperature: How Cold is Cold?

O₂⁺ Temperature: How Cold is Cold?

$O_2^+ V_{BULK} / V_{ESC}$ vs. Topology

Statistics for $R < 1.5 R_M$ and -3 < X < 0 (all upstream conditions) : Topology Distribution

Topology	Number of Measurements	O2+ loss (s ⁻¹)
Open	18484	1.9 x 10 ²⁴
Draped	31732	2.4 x 10 ²⁴
All	50216	4.3 x 10 ²⁴

Topology	Number of Measurements	O+ loss (s ⁻¹)
Open	17587	1.0×10^{24}
Draped	27951	1.4 x 10 ²⁴
All	45538	2.4 x 10²⁴

 O_2^+ / O^+ loss ratio

- Open : 1.9
- Draped : 1.7

Draped / Open loss ratio

- O₂⁺ : 1.3
 - O⁺ : 1.4

Total Oxygen Atom Loss in Tail as lons: Loss (O) = $2 \times Loss(O_2^+) + Loss(O^+) = 1.1 \times 10^{25} s^{-1}$ Statistics for R < 1.5 R_M and -3 < X < 0 (all upstream conditions) : Energy Distribution

Energy	Number of Measurements	Fraction of Total O loss (s ⁻¹)	
< 5 eV	24468	0.19	
< 6 eV	28247	0.27	
< 7 eV	32116	0.31	
< 8 eV	35627	0.41	
< 10 eV	41414	0.46	< 50% of los
< 25 eV	64548	0.73	
< 50 eV	74829	0.80	
< 100 eV	81238	0.84	
All energies	96367	1.00	

Key Points

- Cold ion loss occurs mainly in a cylinder about the MSO X axis with a radius of 1.5 R_M
- Loss is organized by magnetic topology
- Loss exhibits a north bias on open field lines
- ~50% of oxygen loss occurs below 10 eV
- O₂⁺ and O⁺ are lost in close to a 2:1 ratio
 - occurs on both open and draped field lines
 - consistent with ionospheric source region near the exobase
- Total oxygen loss in tail: ~10²⁵ O atoms/s