Solar cycle dependence for the H+/O+ flux ratio in the Venus' magnetotail

Moa Persson*,

Y. Futaana ${ }^{1}$, A. Fedorov ${ }^{2}$, S. Barabash ${ }^{1}$
*moa@irf.se
${ }^{1}$ Swedish Institute of Space Physics, Kiruna, Sweden
${ }^{2}$ IRAP, CNRS, Toulouse, France

> 2018-05-17

ESLAB, Noordwijk, the Netherlands

Swedish Institute of Space Physics

VENUS' WATER

Venus once had water in its atmosphere, but today Venus is very arid
[Donahue+97, Way+18]
How was the water lost?

Escape of water through space is one major mechanism

Several thermal and non-thermal processes involved through Venus' history

NON-THERMAL ESCAPE PROCESSES

In this study we focus on:

- Non-thermal escape
- H^{+}and O^{+}ions
- Venus' magnetotail

[Futaana et al., 2017]

PREVIOUS $\mathrm{H}^{+} / \mathrm{O}^{+}$ESCAPE RATIO STUDIES

- Previous studies made for solar minimum
[Barabash+07, Fedorov+11, Lundin+11, Nordström+13]
- They found a ratio close to 2 : Stoichiometric ratio of water
- We focus on the change from solar minimum to solar maximum
- How much does the solar
 cycle variations influence the escape rate ratio?

INSTRUMENTATION: VEXIASPERA-4/IMA

Venus Express
2006-2014
>3000 orbits

ASPERA-4/IMA

FOV: $90 \times 360^{\circ}$
Energy range: 0.01-36 keV/q
$\mathrm{M} / \mathrm{q}=1,2,4,8,16,32,>40$
Time resolution: 192 s

ONE IMA MEASUREMENT

- Large portion of field-of-view covered by the spacecraft body
- One measurement covers $90 \times 360^{\circ}$
- Need for a method to correct for these limitations

IMA coordinate system

One measurement does not cover the full ion angular distribution

VSO coordinate system

METHOD: SPATIAL GRIDS

Divide the tail into several spatial bins for measurements

METHOD: AVERAGE VELOCITY DISTRIBUTION

O^{+}FLUX MAPS

Solar minimum

H^{+}FLUX MAPS

Solar minimum

Solar maximum
b)

ESCAPE RATE RESULTS

	Solar minimum $2006-2009$	Solar maximum $2010-2014$
$\mathbf{Q}\left(\mathrm{H}^{+}\right)\left[\mathbf{s}^{-1}\right]$	$8.9 \pm 4.7 \cdot 10^{24}$	$1.9 \pm 1.6 \cdot 10^{24}$
$\mathrm{Q}\left(\mathbf{O}^{+}\right)\left[\mathbf{s}^{-1}\right]$	$2.6 \pm 1.1 \cdot 10^{24}$	$2.4 \pm 1.1 \cdot 10^{24}$
$\mathrm{Q}\left(\mathrm{H}^{+}\right) / \mathbf{Q}\left(\mathbf{O}^{+}\right)$	3.4 ± 2.3	0.8 ± 0.7

DISCUSSION

- Lower limit of neutral escape:
- H: 50% of $\mathrm{Q}\left(\mathrm{H}^{+}\right)$
[Lammer+06]
- O: 25% of $\mathrm{Q}\left(\mathrm{O}^{+}\right)$
- Several studies suggest a higher number for H escape
[Rodriguez+84, Chassefiere+96]
- Pre-historic solar conditions was closer to solar maximum

	Solar min 2006-2009	Solar max 2010-2014
$\mathbf{Q}\left(\mathbf{H}^{+}+\mathbf{H}\right)\left[\mathbf{s}^{-1}\right]$	$1.3 \cdot 10^{25}$	$2.9 \cdot 10^{24}$
$\mathbf{Q}\left(\mathbf{O}^{+}+\mathbf{O}\right)\left[\mathbf{s}^{-1}\right]$	$3.3 \cdot 10^{24}$	$3.0 \cdot 10^{24}$
$\frac{\mathbf{Q}\left(\mathbf{H}^{+}+\mathrm{H}\right)}{\mathbf{Q}\left(\mathbf{O}^{+}+\mathbf{O}\right)}$	3.9	1.0

CONCLUSIONS

- O^{+}escape rate average is steady over solar cycle
- H^{+}escape rate decreases by a factor ~ 5 from solar minimum to maximum
- H^{+}flow direction during solar maximum affect escape rate
- $\mathrm{H}^{+} / \mathrm{O}^{+}$escape rate ratio $3.4 \rightarrow 0.8$
- Non-thermal escape in Venus'
 magnetotail dependent on the solar cycle variations

ADDITIONAL SLIDES

LARGE VARIATIONS

$>$ Long time period
> Large spread in solar wind upstream conditions
> Detailed relation between solar wind and ion escape planned for future study

