Solar cycle dependence for the H+/O+ flux ratio in the Venus' magnetotail

Moa Persson^{*,1},

Y. Futaana¹, A. Fedorov², S. Barabash¹

*moa@irf.se

¹ Swedish Institute of Space Physics, Kiruna, Sweden ²IRAP, CNRS, Toulouse, France

> 2018-05-17 ESLAB, Noordwijk, the Netherlands

VENUS' WATER

Venus once had water in its atmosphere, but today Venus is very arid [Donahue+97, Way+18]

How was the water lost?

Escape of water through space is one major mechanism

Several thermal and non-thermal processes involved through Venus' history

NON-THERMAL ESCAPE PROCESSES

In this study we focus on:

- Non-thermal escape
- H⁺ and O⁺ ions
- Venus' magnetotail

[Futaana et al., 2017]

PREVIOUS H+/O+ ESCAPE RATIO STUDIES

- Previous studies made for solar minimum [Barabash+07, Fedorov+11, Lundin+11, Nordström+13]
- They found a ratio close to 2: Stoichiometric ratio of water
- We focus on the change from solar minimum to solar maximum
- How much does the solar cycle variations influence the escape rate ratio?

INSTRUMENTATION: VEX/ASPERA-4/IMA

Venus Express

2006-2014 >3000 orbits

ASPERA-4/IMA

FOV: 90x360°

Energy range: 0.01-36 keV/q

M/q = 1, 2, 4, 8, 16, 32, >40

Time resolution: 192 s

ONE IMA MEASUREMENT

One measurement does not cover the full ion angular distribution

- Large portion of field-of-view covered by the spacecraft body
- One measurement covers 90x360°
- Need for a method to correct for these limitations

METHOD: SPATIAL GRIDS

Divide the tail into several spatial bins for measurements

METHOD: AVERAGE VELOCITY DISTRIBUTION

O⁺ FLUX MAPS

H+ FLUX MAPS

ESCAPE RATE RESULTS

	Solar minimum 2006-2009	Solar maximum 2010-2014
Q(H+) [s ⁻¹]	$8.9 \pm 4.7 \cdot 10^{24}$	$1.9 \pm 1.6 \cdot 10^{24}$
Q(O+) [s-1]	$2.6 \pm 1.1 \cdot 10^{24}$	$2.4 \pm 1.1 \cdot 10^{24}$
Q(H+)/Q(O+)	3.4 ± 2.3	0.8 ± 0.7

DISCUSSION

- Lower limit of neutral escape:
 - H: 50% of Q(H⁺)
 - O: 25% of Q(O⁺) [Lammer+06]
- Several studies suggest a higher number for H escape [Rodriguez+84, Chassefiere+96]
- Pre-historic solar conditions was closer to solar maximum conditions [Ribas+05]

	Solar min 2006-2009	Solar max 2010-2014
Q(H ⁺ + H) [s ⁻¹]	$1.3 \cdot 10^{25}$	$2.9 \cdot 10^{24}$
Q(O ⁺ + O) [s ⁻¹]	$3.3 \cdot 10^{24}$	$3.0 \cdot 10^{24}$
$\frac{Q(H^+ + H)}{Q(O^+ + O)}$	3.9	1.0

CONCLUSIONS

- O⁺ escape rate average is steady over solar cycle
- H⁺ escape rate decreases by a factor ~5 from solar minimum to maximum
- H⁺ flow direction during solar maximum affect escape rate
- H⁺/O⁺ escape rate ratio 3.4 → 0.8
- Non-thermal escape in Venus' magnetotail dependent on the solar cycle variations

moa@irf.se

ADDITIONAL SLIDES

LARGE VARIATIONS

- Long time period
- Large spread in solar wind upstream conditions
- Detailed relation between solar wind and ion escape planned for future study

2006-2014, 0.7 AU

