

Escape and precipitation rates at Venus

<u>Peter Kollmann^{1*}, Pontus C. Brandt¹, Kathleen E. Mandt¹, Glyn Collinson², Zhao Jin Rong³, Yoshifumi Futaana⁴, Tielong L. Zhang⁵</u>

¹The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, USA
² NASA Goddard Spaceflight Center (GSFC), Greenbelt, USA
³ Swedish Institute of Space Physics (IRF), Kiruna, Sweden
⁴ Chinese Academy of Sciences, Beijing, China
⁵ Space Research Institute (IWF), Graz, Austria

Context: Average escape rates

		H⁺ (S⁻¹)	O+ (s ⁻¹)	O₂+ (S ⁻¹)	CO₂+ (S ⁻¹)	Total (kg/s)		
Mars	Lundin+1990 Phobos	-	~30x10 ²⁴	-	-	0.8		
	Barabash+2007 MEX 2004-2006	-	0.2x10 ²⁴	0.2x10 ²⁴	8x10 ²²	0.02		
	Jakoski+2017 MAVEN	-	-	-	-	0.1		
	Lundin+2011 VEX 2006-2009	39x10 ²⁴	12x10 ²⁴	-	-	0.38		
Venus	Nordström+2013 VEX 2006-2009	14x10 ²⁴	5.2x10 ²⁴	-	-	0.16		
	Kollmann+2016 VEX 2006-2014	-	2.0x10 ²⁴	-	-	0.05		
Earth	Yau+1988	-	72x10 ²⁴	-	-	1.8		E
	Seki+2001	-	5x10 ²⁴	-	-	0.1		n
	Borovsky+2008	≤2x10 ²⁶	~10x10 ²⁴	-	-	~0.5		ι

Even the role of a magnetic field is unclear.

APL,

Open question

- Venus and Mars scale oppositely.
- Escape rates change by factor of a few.

APL,

Outline

- Venus escape rate components.
- Venus return flows: Properties and possible drivers.
- Venus and Mars comparison.

Data from Venus Express / ASPERA-4 / IMA instrument (Barabash et al, 2007).

APL,

Venusward flows

Skymap of >3eV intensity

Kollmann et al., 2016

APL,

Sun

Venusward return flows

- Venusward flows here during 70% of this magnetotail crossing.
- Protons and oxygen flows not aligned.

Venusward return flows

Venusward flows mostly in -zVSE hemisphere. \rightarrow Organize with IMF field

Dubinin et al., 2013

Physical driver: Reconnection?

If venusward flows from reconnection, then should occur near the tail current sheet and/or correlate with sheet flapping.

Physical driver: Reconnection? No.

If venusward flows from reconnection, then should

occur near the tail current sheet and/or correlate with sheet flapping.

However, we do not find correlations, for example:

30% venusward flows occur during orbits with single current sheet crossing.

Probability for VEX seeing one sheet crossing is always 30%.

Physical driver: Gravity? No.

Gravity dominates

$$a_{tot} = \frac{GM}{r^2}$$

Acceleration a_{tot} independent on ion mass m.

Gravity competes with charge (q) dependent force $ma_{tot} = \frac{GmM}{r^2} - q(E + vB)$

Large-*m* ions return faster.

ESLAB-52 Symposium 2018

venusward

Physical driver: Full trajectories? Yes?

Venus vs. Mars: Rates

Venus vs. Mars: Spectra

High-energy tail spectra

Other correlations

For net *flux* correlations see poster by K. Masunaga, M. Persoon, et al.

Beyond atmosphere evolution

Venusward return flows...

• heat atmosphere with 70 MW.

<< hundreds GW from UV light

- excite atmosphere → tens of Rayleigh emission.
 < 30kR N+O nightglow
- support nightside ionosphere formation?

Summary

- Venusward flows modulate net escape rate.
 Downtail flows stay constant for different UV input.
- Venusward spectra have high-energy tails.
- Venusward flow origin
 - Not from reconnection?
 - Not from gravity?
 - Might emerge from single particle motion

Thanks

• Venus and Mars escape rates scale oppositely with UV.

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Mean energies

Difference does not follow mass ratio. Protons are faster than one might expect.

Spacecraft electric field

Spherically symmetric: change in bulk flow direction, but not significant.

integrating from 40eV on Asymmetric field: Deflects particles in spacecraft frame, which might make flows come preferentially from a certain *direction* relative to the spacecraft.

Instead, flow direction organizes with the tail direction/VSE frame.

EUV correlation

- Venusward flows occur more frequently during strong EUV.
- EUV affects precipitation rate and net-escape.
- Solar wind moments do not affect precipitation rate.

Correlation with solar wind

APL,

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Motivation

- Understand planetary evolution
- Interpret potential data from exoplanets
- Find relevant physical drivers
- → Study present-day planets in our solar system

Context: Average escape rates

		H + (S ⁻¹)	O + (S ⁻¹)	O ₂ + (S ⁻¹)	CO₂ ⁺ (S ⁻¹)	Total (kg/s)	
Mars	Lundin+1990 Phobos	-	~30x10 ²⁴	-	-	0.8	
	Barabash+2007 MEX 2004-2006	-	0.2x10 ²⁴	0.2x10 ²⁴	8x10 ²²	0.02	
	Jakoski+2017 MAVEN	-	-	-	-	0.1	
	Lundin+2011 VEX 2006-2009	39x10 ²⁴	12x10 ²⁴	-	-	0.38	
Venus	Nordström+2013 VEX 2006-2009	14x10 ²⁴	5.2x10 ²⁴	-	-	0.16	range of
	Kollmann+2016 VEX 2006-2014	-	2.0x10 ²⁴	-	-	0.05	UV scaling, etc. on same order
Earth	Yau+1988	-	72x10 ²⁴	-	-	1.8	as uncertainties.
	Seki+2001	-	5x10 ²⁴	-	-	0.1	
	Borovsky+2008	≤2x10 ²⁶	~10x10 ²⁴	-	-	~0.5	

ESLAB-52 Symposium 2018

APL/

APL,

APL,

Physical driver: Reconnection?

If venusward flows are from **reconnection** and analog to Earth, then venusward flows should

occur near the tail current sheet and/or correlate with current sheet flapping.