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Introduction

Solar wind driven outflows — atmosphere evolution
Driving question — water loss from the terrestrial planets.
Does contemporary oxygen ion outflow rate correspond to water loss?
Does an intrinsic magnetic field inhibit ionospheric escape?
Venus and Mars
At Mars neutrals can escape.
Heavy ion outflow rates ~ 102° s~ at Venus and Mars [Brain et al., 2017].
Outflow rate limited through solar wind dynamic pressure [Dubinin et al., 2017].
Earth outflows
Solar wind interacts indirectly with the Earth’s ionosphere through magnetic field reconnection.
Global oxygen outflow rates: 1024 — 10%¢ s~! [Yau and André, 1997].
Do these ions ultimately escape the terrestrial magnetosphere?
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What Determines the Rate of Water Loss?

Hydrogen can escape more easily than any more massive particle

If the hydrogen comes from water then why are all atmospheres not
oxidizing?

Implies hydrogen loss is controlled by oxygen loss — self regulation.
Balance of rates applies on geological time-scales

For Mars, Hunten and McElroy [1970] argue that time scale is
~ 10° years, otherwise more O, would be present in the atmosphere.

NoO reason to expect balanced rates on short time-scales.
Measured oxygen loss rate does not reflect instantaneous water loss rate
(but we often assume it does).
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Mass Loss — Where Did The Water Go?

Conventional Wisdom: The Magnetic Shield Hypothesis

Venus and Mars are dry, Earth is wet.

Venus and Mars have no active dynamos, Earth does.

Lack of intrinsic field means greater mass loss to the solar wind.
Counter Argument: Solar Wind — Magnetosphere Coupling

Intrinsic magnetic field increases size of obstacle to solar wind flow.

More momentum and energy available to drive loss processes.

Magnetic reconnection couples polar ionosphere to solar wind.

Energy deposition on open field lines allows for heating and outflow.

Some of the outflowing plasma escapes — alternative mass loss process.
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Some Numbers for Context

Assume oxygen loss rate of ~ 102> s,

Corresponds to ~ 300 gs of water loss (assuming oxygen loss
equivalent to water loss).

4.5 billion years ~ 1.4 x 107 s.

Over age of solar system loss rate of 102> s~ gives
4.2 x 10%° g of water.

Earth (6371 km radius): ~ 8 cm of water [~ 7 mbar oxygen]
Venus (6052 km radius): ~ 9 cm of water
Mars (3390 km radius): ~ 30 cm of water
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Escape Velocities

Escape velocity (km/s) | roon Eneray Oxygen Energy

(eV) (eV)
Earth 11 0.6 10
Venus 10 0.5 8
Mars 5 0.13 2

The high oxygen escape energy means plasma
processes are required for escape at Earth and Venus.
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Unmagnetized Planets — Pathways for Loss

Direct neutral escape (mainly

Mars).
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Limiting flux — Solar Wind Dynamic Pressure

The solar wind is the ultimate
source of momentum for

escaping ions, but once the ions

are escaping their flux is
constant.

Equating the momentum flux
the solar wind and escaping

Co >
10NS: Ng,M,Ag Ve~ = MAVVg,,

This was explored by Dubinin et

al. [2017], who found a linear

of

log Fos , cmis™

7.5

relation between ion fluxes and

solar wind flux.
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Earth — Pathways for Loss

Direct ion escape — cusp/cleft
fountain (high energy heavies or

Bow Shock

protons).

Low energy and auroral ions —————Escaping lons
recirculate, populate plasma sheet ,\\(/ S T

and rlng Current Escaping Plasma Sheet ‘ Reconnection

Sunward convection and dynamical
changes allow some escape

through dayside magnetopause.

lons may also escape through
charge exchange (not shown), or
re-enter the atmosphere through
pitch angle scattering (not shown).
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Terrestrial Outflow Rates

Yau and André, SSR, 80, 1-25, 1997
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Cusp Region lon Outflow

FAST Orbit 8276
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Type 1 and Type 2 defined by Wahlund et al. [1992] using radar observations.
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Scaling Laws - Electron Precipitation,
Alfvén Waves

lon Flux v Electron Density
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Precipitating electrons (LHS) are the single best predictor of
outflow fluxes, but hard to model. Alfvén waves (RHS) appear to

be a useful proxy.
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Day/Night Differences

lon Flux v Electron Density

1012 Both dayside and nightside
data show evidence for a
lower flux limit (polar wind?),
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Terrestrial Outflow Models

Recently Varney et al. [2016] have
developed a model that improves on models
that use scaling laws to determined outflows.

Comparison to FAST Empirical Relationship

-
o
©

They included transverse wave heating in
e | their coupled model.

FAST:
2,07 x 1010120

FIT:
0.37 x 10'0 5049
FAST:

2.97 x 10105120

Transverse heating is required to increase
ion energy above escape energies.

Results compare well with FAST scaling

530 = 107575 o sons laws, but again show evidence of flux
ol SRR e ] gaturation.
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Also need to determine if ions are ultimately
lost or recycled.

May 17, 2018 52"d ESLAB Symposium R. J. Strangeway — 15



Summary

Solar wind driven outflows — atmosphere evolution:

Contemporary ion outflow rates are comparable for all three terrestrial planets
10%4 — 1020 s71,

Not clear that an intrinsic magnetic field inhibits ionospheric escape — but how
much of the escaping ions ultimately leave the magnetosphere?

Need substantially higher outflow rates for the early solar system to result in
significant water or atmosphere loss.

EUV and solar wind may be stronger for the early solar system (Venus and
Mars), but so is the solar-wind magnetosphere interaction (Earth).

Fundamental Question:

How do the outflows vary with solar wind parameters?
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Backup Material
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Mars — Dissoclative Recombination

Dissociative recombination can enhance neutral oxygen escape

[Fox and Hac, 2009]. Exothermic energy is partitioned

0, +e —0(P) + 0(P) + 6.99 eV equally between the reaction
’ roducts.
_0('D) + OCP) + 5.02ey,  Products
—,0('S) + O(P) + 2.80 eV Only first two reactions enhance

oxygen escape at Mars.

—0('D) + O('D) + 3.06 eV,
—0('D) +0('S) + 0.83 eV. Does not affect oxygen escape

at Venus.

DR loss rates = 2 x 10%% s~1 [Fox and Hac, 2009], an order of magnitude larger
than typically cited rates for sputtering (e.g., 2 x 10%°> s~1 [Luhmann and
Kozyra, 1991]).

DR loss process largely independent of solar wind conditions, but will depend

on solar EUV.
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Solar Wind Interaction — Mechanisms

A magnetized plasma behaves like a fluid
(magnetohydrodynamics, MHD), but with the addition of magnetic

forces (Maxwell stress) to the momentum and energy equations of
the fluid.

Magnetic stresses can be applied to the Earth’s magnetosphere
through a process known as reconnection, where field lines from
the solar wind “reconnect” with field lines from the Earth’s
magnetosphere.

Electromagnetic energy can be transferred as Poynting flux

through either large scale current systems (“DC”) or MHD waves
(Alfvén waves).
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Outflow Mechanisms

r=0.721 :ﬁ“y lon Quitflow (1-‘.‘ r=0.855

=0.634
Poynting Flux >
r=0.743
r= ON ELF/VLF Waves % 741
Heatlnq}

lon Upwelling

lon Scale Height
Increase

Electron Precipitation
(Magnetosheath)

Observed at FAST

Inferred

Electron Scale Height
Increase — Ambipolar Field

/ \

Joule Dissipation

Type 1 Type 2

Electron Heating/lonization

) Causal |:1> Possibly Causal l:'\“/\ Correlated

Type 1 and Type 2 defined by Wahlund et al. [1992] using radar observations.

May 17, 2018 52"d ESLAB Symposium R. J. Strangeway — 20



Alfvén Wave Parameters

FAST Orbit 8276

At FAST altitudes low frequency
e signals (< 0.125 Hz) are “quasi-
static” — DC Poynting flux
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Multiple Linear Regression

Table of slopes and significance test for multiple linear regression
log,o(parameter) v log,,(ion number flux)

Poynting Flux Electron Alfvén Wave ELF F,,; Test
Density Amplitude
0.78 1.30 0.53 -1.46
Deleted 1.32 0.47 0.63 6.44
0.81 Deleted 0.88 -0.54 13.69
0.70 1.71 Deleted -0.56 6.43
0.44 1.19 0.43 Deleted 1.94

Parameter can be deleted for F, ,, < 4.21 (95% confidence)
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Scaling Laws

Poynting Flux lon Flux v Electron Density
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Electron Flux

Flux Saturation
Predicted fluxes based on

electron data (no E-field).

FAST Orbit 33792

Overall agreement, but
evidence of flux saturation.
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