Cold ion outflow from the terrestrial atmosphere:

Sources, mechanisms and consequences

Stein Haaland^{1,2},

with inputs from M. Andre & A. Eriksson³ B. Lybekk & A. Pedersen⁴, K. Li⁵, L. Maes²

 ¹ Birkeland Centre for Space Science, University of Bergen, Norway
 ² Max-Planck Institute, Germany

³ Swedish Institute of Space Physics, Uppsala

⁴ University of Oslo, Norway

⁵ Chinese Acedemy of Sciences, Beijing

690 km

Shuttle

100 km

Aurora

-ter

-100 0

(Kármár line) 85 km

sphere Meteors à N

50 km Weather balloon

<u>6 –</u> 20 km Mount Everest Earth:

* Composition N, O, H

* Ionization mainly from EUV

[] 1e12 Ne

Wikipedia/Wallpapers.com

Sources: high latitude (cusp, polar cap, auroral zone)

Cusp: - precipitation - wave heating

e.g., Lockwood et al., 1985, Yau et al, 1987

Cusp: - precipitation - wave heating

e.g., Lockwood et al., 1985, Yau et al, 1987

Cusp: - precipitation - wave heating

> Auroral zone: - precipitation

- FAC
- E_{...}

- Joule heating

e.g., Wahlund et al, 1989, Winser et al, 1989

Cusp: - precipitation - wave heating

Open polar cap

- ambient E
- polar wind
- low energy (cold)

Auroral zone: - precipitation - E

Axford, 1968, Banks & Holzer, 1968,

Hoffman et al, 1970, Brinton et al, 1970

ESLAB 52, May 17 2018

Mechanisms

B -field

Mechanisms:

- electrons escape
- ambipolar E-field set up
- light ions extracted

Escape energies: e⁻ : << 1 eV H+ : ~ 1 eV O+ : ~ 10 eV

Ion outflow from polar cap regions

Escape rates, Earth:

~1e25 to 1e26 ions/sec ~50'000 – 100'000 t/year (strongly modulated by EUV, IMF)

* mainly H⁺ and O⁺ (despite 78% N)

B-field

~10% downtail loss_into solar wind ~90% recirculated in M'sphere

Transport and forces

Field aligned acceleration of cold ions are primarily governed by :

- * Gravity (low altitudes)
- * Mirror force (low altitude)
- * Centrifugal force (intermediate altitudes)
- * Electric fields (relevant at low altitudes otherwise $E_{\parallel} \sim 0$)

...for comparison .. other sources

Supply rates :

* Solar wind : $10^{24} - 10^{27} \text{ s}^{-1}$ [1,2] * High latitude : up to 10^{27} s^{-1} [3]

* Terrestrial outflow ~10²⁶ s⁻¹ [4]
 "Cold" (~ 10's eV) dominating [5]

[1] Cowley et al, 1980
 [2] Walker et al, 1995
 [3] Shi et al, 2013
 [4] Yau et al, 1999
 [5] André & Cully, 2012, Andre, 2016

Plasmasheet

2

Observations: Cluster (cold outflow)

~4 x 20 Re polar orbit ~17 years of observations ~1 $\frac{1}{2}$ solar cycle

Cluster results

eesa

- 4 identical spacecraft
 - launched 2001
 - sep dist 1000s km (in lobes)
- 2 different E-field techniques
- Outflow velocity from wake method
 see next slides
- Outflow density from SC potential
 see next slides

Cluster observations

Cold ion outflow Cluster advantages

- Modulations

- Solar illumination
- Geomagnetic activity

North-South asymmetries

Cluster: Utilize spacecraft charging

S

Sunlight = photons, $E = h \gamma$

e- (photo electron \rightarrow current)

Cluster: Utilize spacecraft charging

 $V_0 \sim V_P$ = ambient plasma = 0 V

ESLAB 52, May 17 2018

Cluster: Plasma density from spacecraft potential

Lybekk et al, 2012 (based on earlier works by Grard, Laakso, Pedersen...)

Outflow velocity - 'wake method'

Engwall et al, 2009

Key feature : 2 electric field experiments

EFW :

- * ~100 m scale
- * measures E_{WAKE}

EDI:

- * 1keV electron scale
- * not affected by wake
- * measures E_{conv}

Outflow rates, cold ions

* Average outflow rate ~10²⁶ ions/s
* Cold, ("invisible"), ions constitute a dominant part of the total outflow

Modulations: Solar illumination

- daily
- seasonal
- solar cycle

Also Maes et al, 2016,2017

Modulations: Geomagnectic activity: PC area + transport

Milan et al, 2009, Haaland et al, 2014

Consequences I : supply to plasma sheet

Quiet conditions, stagnant convection - direct loss downtail

Intermediate geoactivity – 80-90 % circulation - supply far downtail

Disturbed conditions, strong convection

- little downtail loss
- supply close to Earth

Haaland et al, 2014, 2017

Consequences I : supply to plasma sheet

Quiet conditions, stagnant convection - direct loss downtail

Intermediate geoactivity – 80-90 % circulation - supply far downtail

Disturbed conditions, strong convection

- little downtail loss
- supply close to Earth

Haaland et al, 2014, 2017

Consequences II - microphysics: Intermediates scale in reconnection – reduce Hall currents

Andre et al, 2016 (also Andre et al 2010, Walsh et al, 2015, Borovsky et al, 2015, Toldedo-Redondo et al, 2016)

ESLAB 52, May 17 2018

North – south asymmetries ?

- B-field different
- dipole offset
- polar cap area
- effective illumination

ESLAB 52, May 17 2018

North – south asymmetries

Cluster lobe densities 2001-2016 :

Haaland et al, 2017

North – south asymmetries

Cluster lobe densities 2001-2016 : Higher outflow from Northern hemisphere

Haaland et al, 2017

Summary

- 50'000 – 100'000 tonnes of ions escape per year from Earth

- strongly modulated by solar illumination
- ...but also geomagnetic activity, precipitation...
- constrained by production (ionospheric plasma density)
- ~90% recirculated only 10% direct downtail loss
 governed by transport/convection
- ionosphere = significant contributor to magnetospheric plasma
- cold plasma influence microphysics
 modify/quench reconnection (reduce Hall curr)

- North- south asymmetry

- local differences in N and S ionosphespheres

Planetary Atmospheric Erosion Europlanet Workshop 2018

11-15 June 2018 Murighiol, Romania

Abstracts, hotel booking, registration: 21 May 2018

Travel support available for early career scientists

http://gpsm.spacescience.ro/europlanet2018/