ARIEL – Atmospheric Remote-sensing Infrared Exoplanet Large-survey

ARIEL: Mission Overview & Community Participation

Göran Pilbratt, ESA ARIEL Study Scientist
ARIEL: Science, Mission & Community 2020, ESTEC, Noordwijk, 14-16 January 2020

European Space Agency
ARIEL will enable transformative science:

The first dedicated chemical census of a large diverse sample of exoplanets in diverse systems

ARIEL selected as Cosmic Vision M4 mission
• Involve the exoplanet community at large in ARIEL
• Present ARIEL and its science as proposed for adoption
• Put ARIEL into context of other missions and observatories
• Discuss, plan, & promote long term community involvement
M4 – ARIEL

Issue of AO for new missions: 27 proposals

Selection by Advisory Structure: ARIEL THOR XIPE for study

CDF studies in ESTEC

ADS/TAS parallel industrial studies with support of payload consortium

Selection of one mission by Advisory Structure/SPC

Phases:
- Phase 0
- Phase A
- Phase B1

Goal: Prog & sci assmt Assessment

Reviews:
- MSR
- SPC
- pSRR
- MAR
- SPC

Definition Study leading to Mission Adoption by SPC
Spacecraft & mission

S/c under study by industry (x2) and ARIEL Consortium (PLM)

Instruments
- Spectrometers
 - NIRSpec: 1.1-1.95 µm R~15
 - AIRS0: 1.95-3.9 µm R~100
 - AIRS1: 3.9-7.8 µm R~30
- Photometer
 - VNIR channels: 0.5-0.6, 0.6-0.8, 0.8-1.1 µm

Telescope
- Off-axis Cassegrain (all aluminium)
- 1.1 x 0.7 m aperture (0.64 m² collecting area)

Spacecraft & mission
- Payload module (PLM) passively cooled
- Some detectors actively cooled
- Dual A62 launch, max launch mass 1335 kg
- Large halo-orbit around L2
- Nominal lifetime 4 years, extended 6 years
Spacecraft & mission

S/c under study by industry (x2) and ARIEL Consortium (PLM)

Instruments
- Spectrometers
 - NIRSpec: 1.1-1.95 µm R~15
 - AIRS0: 1.95-3.9 µm R~100
 - AIRS1: 3.9-7.8 µm R~30
- Photometer
- VNIR channels: 0.5-0.6, 0.6-0.8, 0.8-1.1 µm

Telescope
- Off-axis Cassegrain (all aluminium)
- 1.1 x 0.7 m aperture (0.64 m² collecting area)

Spacecraft & mission
- Payload module (PLM) passively cooled
- Some detectors actively cooled
- Dual A62 launch, max launch mass 1.4 ton
- Large halo-orbit around L2
- Nominal lifetime 4 years, extended 6 years

ARIEL is realized by ESA and the ARIEL Mission Consortium (AMC)
- ESA has overall responsibility for the mission
- ESA provides the SVM, launch services, mission operations (MOC), and part of the science operations (SOC)
- AMC provides the PLM, and part of the science operations (IOSDC)
Exoplanets: they abound
4104 confirmed exoplanets in 3047 systems (as of 12 Jan 2020)
Exoplanets: but limited knowledge

4104 confirmed exoplanets in 3047 systems (as of 12 Jan 2020)

Figures courtesy of Leconte
ARIEL: the next step

Chemical census of a LARGE sample of DIVERSE exoplanets

Key top level questions
- What are exoplanets made of?
- How do planets & planetary systems form?
- How do planets & their atmospheres evolve?

Observations
- Probe atmospheric chemistry & dynamics
- IR transit & eclipse spectroscopy (1.1-7.8 µm)
- VNIR multiband photometry (0.5-1.1 µm)

Targets
- ~1000 known exoplanets, transiting stars brighter than K=9.5
- Diverse sample from gas giants to super-earths (possibly reaching earth-sized)
- Focus on warm & hot planets, T >500 K, to limit sequestration
ARIEL: the next step

Chemical census of a LARGE sample of DIVERSE exoplanets

Key top level questions
- What are exoplanets made of?
- How do planets & planetary systems form?
- How do planets & their atmospheres evolve?

Questions and priorities
- Which targets are to be observed?
- What observations are to be carried out?
- Providing answers to what science objectives?

Targets
- ~1000 known exoplanets, transiting stars brighter than K=9.5
- Diverse sample from gas giants to super-earths (possibly reaching earth-sized)
- Focus on warm & hot planets, T >500 K, to limit sequestration

Leconte et al. 2014
(Exo)planetary systems
- Solar system is one outcome of planetary system formation
- Many other possible outcomes

(Exo)planets
- Solar System has
 - Temperate rocky planets
 - Cold gas rich planets
- Exoplanetary systems have
 - Extreme diversity of planets
 - Types of planets missing in SS
 - More to come (and biases)

Observe large and statistically representative sample!

Turrini et al. 2018
ARIEL: beyond ‘bulk’ density

Planets with both size and mass

Atmospheric composition can clarify degeneracy

Same bulk density – different atmospheric signatures

López-Morales et al. 2016

See Valencia et al. 2013

ARIEL: Science, Mission & Community 2020 | ESA/ESTEC, Noordwijk | GLP | 14/01/2020 | Slide 12
ARIEL: ‘trends’ & populations?

Does chemical diversity correlate with other (stellar? disk?) parameters?

Forget & Leconte 2014
Leconte et al. 2014

Turrini et al. 2015

Öberg et al. 2011
Potential ARIEL targets
• Hundreds available then, more now
• Thousands expected by 2028
 • Most from TESS (CHEOPS, PLATO)
 • Groundbased also contributing

Mission Reference Sample
• Will continuously evolve
• New targets
• New science questions/priorities
• New observations
• Yellow Book example illustrated

Yellow Book (2017) MRS used for successful simulations to verify the feasibility of ARIEL science objectives

Zingales et al. 2018
Targets: constructing MRS

Introduce 4D space: T_{eff}, [Fe/H], R_{pl}, T_{pl}

<table>
<thead>
<tr>
<th>Stellar Temp.: T_{eff}</th>
<th>3000 < T_{eff} < 4100</th>
<th>4100 < T_{eff} < 5800</th>
<th>T_{eff} > 5800K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labels</td>
<td>M-Late K</td>
<td>Early K-G</td>
<td>F-G</td>
</tr>
<tr>
<td>Metallicity: [Fe/H]</td>
<td>[Fe/H] < -0.15</td>
<td>-0.15 < [Fe/H] < 0.15</td>
<td>[Fe/H] > 0.15</td>
</tr>
<tr>
<td>Labels</td>
<td>Low [Fe/H]</td>
<td>Solar</td>
<td>High [Fe/H]</td>
</tr>
<tr>
<td>Planet Radius: R_{pl}</td>
<td>R_{pl} < 3R_{\oplus}</td>
<td>3 < R_{pl} < 8</td>
<td>R_{pl} > 8R_{\oplus}</td>
</tr>
<tr>
<td>Labels</td>
<td>Earths/ Super Earths</td>
<td>Neptunes</td>
<td>Jupiters</td>
</tr>
<tr>
<td>Planet Temp.: T_{pl}</td>
<td>contiguous bins: [250, 500, 800, 1200, 1600, 2600] K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘Optimal’ sample definition
- (Down-)Selection of potential targets to ‘optimal’ MRS currently discussed
- Here the YB sample (1002 targets)
- What is a/the ‘optimal’ sample?
- Depends on scientific priorities!
- Expect changes from now => launch!

Micela 2018 priv comm
Targets: constructing MRS

‘Optimal’ sample definition

- Maximise to 10 planets per bin – slightly lower number of targets
 1002 => 908 (left)
- Ongoing work – will continue!

Micela 2018 priv comm
Science: 4-tier strategy

TIER 1: RECONNAISSANCE SURVEY

<table>
<thead>
<tr>
<th>Observational strategy</th>
<th>Science outcome</th>
<th>Expected No. of planets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low resolution spectroscopy (5-10(^*) spectral resolution elements covering the 1.10 – 7.80 (\mu)m range) measurements with average SNR ≥ 7</td>
<td>What fraction of planets are covered by clouds?</td>
<td>800+</td>
</tr>
<tr>
<td>All planets in the sample</td>
<td>What fraction of small planets have still retained H(_2)?</td>
<td></td>
</tr>
<tr>
<td>Transit or eclipse</td>
<td>Colour-colour diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constraining/removing degeneracies in the interpretation of mass-radius diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albedo, bulk temperature & energy balance for a subsample</td>
<td></td>
</tr>
</tbody>
</table>

TIER 2: DEEP SURVEY

Spectroscopic measurements for a subsample (e.g., 50% of sample)	Main atmospheric components for small planets	400+
R~10 for 1.10 < \(\lambda\) < 1.90 \(\mu\)m; R~50 for 1.95 < \(\lambda\) < 3.90 \(\mu\)m; R~15 for 3.90 < \(\lambda\) < 7.80 \(\mu\)m, with average SNR ≥ 7	Chemical abundances of trace gases	
Transit and/or eclipse	Atmospheric thermal structure (vertical/horizontal)	
	Cloud characterisation	
	Elemental composition	

TIER 3: BENCHMARK/REFERENCE PLANETS

Spectroscopic measurements	Detailed knowledge of the planetary chemistry and dynamics	50+
R~15 for 1.10 < \(\lambda\) < 1.90 \(\mu\)m; R~100 for 1.95 < \(\lambda\) < 3.90 \(\mu\)m; R~30 for 3.90 < \(\lambda\) < 7.80 \(\mu\)m, with average SNR ≥ 7 achievable in 1-2 observations	Weather, temporal variability	
Transit and/or eclipse, repeated in time	Elemental composition	

TIER 4: BESPOKE OBSERVATIONS & PHASE-CURVES

| Phase-curves, eclipse mapping, bespoke observations | Detailed knowledge of the planetary chemistry and dynamics | 10+ |
| Multiple-band photometry/spectroscopy with SNR ≥ 7 | Spatial variability | |
Data products

- **Level 0**: Compressed and time ordered Telemetry packets.
- **Level 1**: Unpacked, uncompressed Level 0 Data, organized in raw, uncalibrated data cubes: Raw photometric or spectral images of Science Frames.
- **Level 1.5**: Calibrated, background subtracted, bad pixel masked, ramp fitted, units converted Level 1 Data: Calibrated photometric or spectral images of Exposures.
- **Level 2**: Spectrally resolved Light-curves of Target.
- **Level 3**: Broad-band Exoplanets spectra.

ARIEL Public Archive @SOC
ARIEL and the Community

ARIEL wants to embrace and have a dialogue with the Community

Attend ARIEL conferences
• Like this one – there will be more at a TBD frequency

Join the ARIEL Mission Consortium (AMC)
• Talk to the AMC

Use public ARIEL data
• ARIEL survey data and complementary science data – rules under discussion/definition
Data releases

Timely deliveries of high quality data products (core science) currently under discussion/definition

Data products Level ≤ 2

- **SDP**: data public *immediately* after quality control is completed
- **Tier 1**: data public *immediately* after quality control is completed
- **Tiers 2 & 3**: data public *6 months* after quality control is completed
- **Tier 4**: data public *12 months* after quality control is completed

Data products Level 3

- Will be made public *after publication* in journal

For complementary science products and rules are different
ARIEL and the Community

ARIEL wants to embrace and have a dialogue with the Community

Attend ARIEL conferences
• Like this one – there will be more at a TBD frequency

Join the ARIEL Mission Consortium (AMC)
• Talk to the AMC

Use public ARIEL data
• ARIEL survey data and complementary science data – rules under discussion/definition

‘Formal’ Community participation – under discussion/definition
• Community Scientist in the ARIEL Science Team (AST)
• Participation in the definition of the target lists
• Complementary science programme
Community participation

Currently under discussion/definition

Community Scientist in the ARIEL Science Team (AST)

- (Selected) AST responsibilities:
 - Maximising the **scientific return** of ARIEL within programmatic constraints, … while ensuring that the development and operations of the mission remain compatible with its main scientific objectives
 - Optimising the **scientific performance** of the payload and spacecraft, calibration, data products, scientific exploitation, …
 - Supervising and being closely involved in the preparation and periodic update of the **Mission Candidate Sample** (MCS) list and being responsible for defining the scientific priorities for the generation of the **Mission Reference Sample** (MRS) list(s)
 - **Promoting** the mission

- A **TBC number of Community Scientists** will be recruited through an Announcement of Opportunity (AO) issued by ESA, and **appointed by ESA** (as all AST members are)
- **Timescale**: (shortly) after mission adoption
Community participation

Currently under discussion/definition

Participation in the definition of target lists

- Mission Candidate Sample (MCS) and Mission Reference Sample (MRS) lists
 - **MCS**: ‘all potential’ ARIEL targets
 - Today most are ‘virtual’ sources, but in the future need to become real targets
 - **MRS**: a list of targets that could be observed in the nominal ARIEL mission
 - Multiple MRSs can/will be produced from the MCS with different scientific priorities, provided by the AST, as part of science optimization before and during the mission
- These lists will be made **publicly available** online through a dedicated website
- **Complementary processes** for participation are currently being considered:
 - ‘Continuous’ processes consisting of input provision through a dedicated website, and public regular workshops
 - Other ‘dedicated’ processes are also being considered
Community participation

Currently under discussion/definition

Complementary science programme

- Due to the **nature of the ARIEL exoplanetary observations** there will be a fraction (~10% TBC) of the total available observing time which cannot be used for these
- The bulk of these **non-schedulable slots will be short**, ~75% ≤2 hours, a few x1000 ≤4 hours, some longer
- This time can be used for complementary science observing
 - Must be **schedulable as ‘fillers’** – not time critical
 - **Cannot drive** the mission/payload in any way
- An **ESA-led AO is foreseen** for such observation proposals
 - Data products up to level 1.5 (for some 2) are foreseen
 - Proprietary time of 6 months after receiving the data.
We are the first generation to know that the ancient hypothesis about planets around other stars is true.
We are the first generation to know that the ancient hypothesis about planets around other stars is true.
We are the first generation to know that the ancient hypothesis about planets around other stars is true.

We are also the first generation who are capable of studying these other worlds.
Thank you!