AREL

Giovanna Tinetti & ARIEL team

Exoplanet missions – next decade

What are exoplanet made of?

How do planets and planetary systems form?

How do planets and their atmospheres evolve over time?

ARIEL

- Selected as ESA M4 mission in March 2018 (launch 2028)
- 1-m telescope, spectroscopy from VIS to IR
- ~1000 exoplanets observed (rocky + gaseous)
- Simultaneous coverage 0.5-7.8 micron

Payload consortium: 17 ESA countries + US CASE & JP understudy

ARIEL

ARIEL – payload design summary

ARIEL – Spectral range/resolution

Wavelength Ranges and Spectral Resolutions of Ariel's Instrumentation					
Instrument Name	Wavelength Range (µm)	Resolution			
VISPhot	0.5–0.6				
FGS 1	0.6–0.81	Photometric bands			
FGS 2	0.81–1.1				
NIRSpec	1.1–1.95	20			
AIRS Ch0	1.95–3.9	100			
AIRS Ch1	3.9–7.8	30			

ARIEL – payload contributions

ARIEL – Sky visibility

ARIEL team growing

ARIEL Science WG in Phase B

ARIEL Data: Tier 2 spectra

Optimal SNR/R to retrieve:

- Main/trace gases abundances
- Thermal & chemical profiles
- Cloud characterisation

Atmospheric chemistry

SIMULATIONS & RETRIEVAL OF CHEMICAL PROFILES FROM ARIEL TIER-2 SPECTRA

Link with planet formation

Key molecular species/elemental ratios connecting atmospheres and formation

Lithogenous & Refractory Elements: SiO (*) AIO CaO TiO (*) VO (*) MgH TiH	Atmophile elements: H2O (*) CO (*) CO2 (*) CH4 (*) NH3 (*) HCN (*) C2H2 (*) C2H4 (*) C2H6 (*)	
Moderately & Highly Volatile elements: HF H2S SO SO2 (*)		
HCI HBr KCI PH3 (*)	Formation WG	HL Tauri Ormel and Min, 2017

Phase-curves

Spectroscopy & multi-band photometry

Charnay et al., 2015

Phase-curve WG

Low gravity planets

IS H2 STILL THERE? IS THERE A SECONDARY ATMOSPHERE? HOW THICK IS THE ATMOSPHERE? WHAT ARE THE TRACE GASES?

Low gravity planets

ARIEL TIER1, TIER 2 & PHASE-CURVES WILL PROVIDE INFORMATION ABOUT THE ATMOSPHERIC COMPOSITION & THICKNESS

Mission Time Required to Achie 113 Small Planets in the Exampl	eve Tier 1 Resolutio e MRS Assuming D Weights	ns (at $S/N > 7$) for the ifferent Mean Molecula
Atmospheric Mean Molecular	Number of	Required Science
Weight	Planets	Time (hr)
2.3	All	$\sim 1000 (t_0)$
5	50	$t_0 + \sim 360$
	All	$t_0 + \sim 3000$
8	50	$t_0 + \sim 1100$
	All	$t_0 + \sim 9200$
10	50	$t_0 + \sim 1900$
15	50	$t_0 + \sim 4400$
18	25	$t_0 + \sim 1700$
	50	$t_0 + \sim 6400$
28	25	$t_0 + \sim 4300$
	50	$t_0 + \sim 15,600$

Note. The total science time over the 4 yr primary life is \sim 24,800 hr. t_0 is the time spent observing small planets in Tier 1 of the standard MRS.

ARIEL Open Conference – ESTEC 2020

Edwards et al. 2019

ARIEL targets – planets

https://arielmission.space/target-list/

ARIEL Open Conference – ESTEC 2020

Edwards et al. 2019

ARIEL – Simulators

ARIEL – Spectral retrievals

MANY SPECTRAL RETRIEVAL MODELS AVAILABLE TO THE CONSORTIUM

ARIEL Data Challenge 2019 – Blind challenge mini Neptune

ARIEL Data Challenge 2019; Spectral retrieval WG

Stellar activity: pulsation/granulation

convection-driven variability arising from pulsations & granulations is not an issue for ARIEL data

Sarkar et al. 2018

Stellar activity: spots & faculae

PLANET DOES CROSS SPOTS & FACULAE: MORE VICIOUS PROBLEM...AI SOLVABLE?

ExoClocks

exoclock.space

	My Telescopes									Welcom	e Angelo Logo
	Nam	e	Size [inches	s]	Observatory		Latitude [degrees]	Longitude [degree	ees] Camera		
	Celestron C	II-ATIK	11.0	Holome	n Astronomical S	itation	46,4	23.5	АЛК4	060/11069	Delete
ARIEL SPACE	MISSION	EwC	ikak = N	dy Protide	 My Scher 	date = M	iy Lab 🗢			000 i303E	Deleir Deleir
Planet Name & Remarks	Star RA/DEC [h/deg]	Star Vmag [mag]	Transit Depth [mmag]	Transit Duration [b]	Observ. Start [TZ:2.0]	Transit Start [TZ:2.0]	Transit Mid-point [TZ:2.0]	Transit End [TZ:2.0]	Observ. End [TZ:2.0]		
WASP-52b OW PRIORITY NO PRE- TRANSIT	23:13:58.74 8:45:40.5 FOV	12.0	33.51	1.82	2019/09/06 19:31 16º E	2019/09/0 20:31 27° E	6 2019/09/06 21:26 36° SE	2019/09/06 22:20 44° SE	2019/09/06 23:20 52° SE	h	
TrES-2b	19:07:14.03 49:18:59.0 FOV	11,41	15.44	1,84	2019/09/06 19:59 82º NE	2019/09/00 20:59 82º NW	6 2019/09/06 21:54 74° NW	2019/09/06 22:49 66° NW	2019/09/06 23:49 56° NW		
HAT-P-32b MEDIUM PRIORITY NO PRE- TRANSIT	2:04:10.28 46:41:16.2 FOV	11.29	29,63	3.12	2019/09/06 20:04 19º NE	2019/09/00 21:04 27° NE	6 2019/09/06 22:38 41° NE	2019/09/07 00:12 56° NE	2019/09/07 01;12 66° E		
Qatar-1b DW PRIORITY	20:13:31.60 65:09:43.3 FOV	12.84	25.33	1.65	2019/09/06 20:25 66° N	2019/09/0 21:25 68° N	6 2019/09/06 22:15 68º N	2019/09/06 23:04 65° N	2019/09/07 00:04 60° NW		

2016-08-11

WASP-93b

Angelos Tsiaras* (UCL, AUTh), Anastasia Kokori (UCL, ROG, AUTh)

Kokori & Tsiaras, 2019

Synergies JWST/HST

Conclusions

- Exoplanets appear to be ubiquitous in our Galaxy
- The number of discovered exoplanets is increasing exponentially, but we still know very little about them
- ARIEL has been conceived to deliver the first chemical survey of ~ 1000 exoplanets, probing uniformly the gamut of planet and stellar parameters
- Results obtained in Phase B have shown that ARIEL instrument will enable even more compelling science that what we presented in Phase A.

Interested in helping? You are welcome to join!